期刊文献+

关于一类捕食与被捕食种群关系数学模型研究

Study on Mathematical Model of a Class of Predator Communituy and Prey Community
下载PDF
导出
摘要 本文通过对一个微分方程组的奇点分析,轨线分布情况及全局稳定性的讨论(文中对捕食者种群的吸收率K(x)用三段函数来表示),得出结论:无论两个种群的原始数量如何,随时间的推移,总要稳定在正平衡点(1/2,3r/8)上,从而揭示了错综复杂的生物圈内,捕食者种群与被捕食者种群间的捕食关系. Through the singularity analysis on a Calculus system of equations, trajectory distribution circumstance and overall situation disscusion (This article uses three-stage function to represent absorptivity of predator community-k (x)), this article eventually concludes, despite of primitive quantity, that the two communities always keep stability at the balance point (1 /2 ,, 3r/8 ) with the lapse of time. Thus it reveals the relationship between predator community and prey community with in a complicated biosphere.
作者 郑文法
机构地区 三明林业学校
出处 《漳州师范学院学报(自然科学版)》 1999年第2期25-29,共5页 Journal of ZhangZhou Teachers College(Natural Science)
关键词 捕食者 被捕食者 种群关系 数学模型 微分方程组 Predator, Prey, Stability
  • 相关文献

参考文献3

二级参考文献4

  • 1Lu Zhengyi. On the LaSalle’s invariant set for five-dimensional Lotka-Volterra prey-predator chain systems[J] 1989,Acta Mathematica Sinica(3):214~218
  • 2Fortunata Solimano. The existence of stable equilibria in Volterra predator-prey systems represented by loop graphs[J] 1985,Bulletin of Mathematical Biology(4):489~494
  • 3Yasuhiro Takeuchi,Norihiko Adachi. Existence and bifurcation of stable equilibrium in two-prey, one-predator communities[J] 1983,Bulletin of Mathematical Biology(6):877~900
  • 4Yasuhiro Takeuchi,Norihiko Adachi. The existence of globally stable equilibria of ecosystems of the generalized Volterra type[J] 1980,Journal of Mathematical Biology(4):401~415

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部