期刊文献+

几族循环图的支撑树数

The Numbers of Spanning Trees of Some Families of the Circulant Graphs
下载PDF
导出
摘要 设Cn(a1,a2,…,ak)是个循环图,t(G)是图G的支撑树数、本文利用第二类Chebyshev多项式给出了t(Cn(1,3)),t(Cn(2,3)),t(Cn(1,2,3)),t(Cn(3,5)),t(C2n(1,2,n))的公式.一个具体的例子表明,利用Chebyshev多项式的性质,即使n很大; Let Cn (a1,a2,,ak ) be the circulant graph and t(G) be the number of spanning trees of a graph G. In this paper, the formulas for t(Cn (1,3)), t(Cn (2,3)), t(Cn (1,2,3)),t(C, (1,5)), t(Cn (3, 5)) and t(C2n. (1,2, n)) are obtained in terms of Chebyshev polynomials of the second kind. Using some properties of Chebyshev polynomials, one can easily obtain the values of these formulas even if n is large.Theorem 6. Let Fn, be the nth Fibonacci number and Un (x) Chebyshev polynomials of the second kind. Let If n≥ 3, then
作者 陈协彬
出处 《漳州师范学院学报(自然科学版)》 1999年第4期11-18,共8页 Journal of ZhangZhou Teachers College(Natural Science)
关键词 支撑树 循环图 CHEBYSHEV多项式 FIBONACCI数 线 spanning tree, circulant graph, Chebyshev polynomial
  • 相关文献

参考文献1

  • 1F. T. Boesch,H. Prodinger. Spanning tree formulas and chebyshev polynomials[J] 1986,Graphs and Combinatorics(1):191~200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部