期刊文献+

季胺盐阳离子插层蒙脱土对铀吸附性能的研究 被引量:11

Adsorption of Uranium from Aqueous Solution Using CTMA^+-Pillared Montmorillonite
下载PDF
导出
摘要 通过十六烷基三甲基溴化铵(CTMAB)与钠基蒙脱土离子交换制备出季胺盐阳离子插层蒙脱土(CTMA+-M),采用小角X射线衍射仪、傅里叶变换红外光谱仪和高分辨透射电镜表征微观结构,研究CTMA+的插层量、溶液的初始pH值、初始浓度和其他共存离子对吸附铀性能的影响,考察了CTMA+-M处理铀矿水冶废水的应用性能。结果表明:CTMA+插层后蒙脱土的层间距由1.21 nm增加到4.09 nm,但仍保持钠基蒙脱土原有的晶体结构。随CTMAB用量的增加,插层到蒙脱土层间的CTMA+量增加,对铀离子的吸附容量逐渐增大,当CTMAB的用量超过阳离子交换容量的1.4倍时,铀吸附容量基本保持不变。溶液pH和接触时间对铀离子吸附性能影响较大,CTMA+-M最佳吸附pH值为6.0,平衡吸附时间为80 min,CTMA+插层能够改善蒙脱土对铀离子的选择性吸附。在1 L含有15 mg/L铀的废水中加入1.5 g CTMA+-M时,铀的去除率达到98%以上。 The ability of hexadecyltrimethylammonium cation pillared montmorillonite (CTMA ~ -M) has been ex- plored for the removal and recovery of uranium from aqueous solutions. The adsorbent was characterized using small-angle XRD, FTIR and HRTEM. The influences of different experimental parameters such as CTMA + pil- lared amount, solution pH, initial uranium concentration and contact time on adsorption were investigated. The interlayer spacing rose from 1.21 nm to 4.09 ran, and still remained the original crystal structure. The CTMA + - M exhibited the highest uranium sorption capacity at initial pH of 6.0 and at 80 rain. With the increasement of CTMA + , the uranium sorption capacity enhanced, and kept steady when the CTMAB used exceed 1.4 time of the cation exchange capacity. Selective adsorption studies showed that the CTMA+ -M could selectively remove U (VI), and the selectivity coefficients were improved after pillaring in the presence of co-existing ions, Na(I), Ni ( Ⅱ), Sr( Ⅱ), Mn( Ⅱ), Mg(Ⅱ) and Zn(II). Complete removal ( - 100% ) of U(VI) from 1.0 L simulated nu- clear industry wastewater containing 15.0 mg U(VI) ions was possible with 1.5 g CTMA+ -M.
出处 《东华理工大学学报(自然科学版)》 CAS 2013年第4期400-405,共6页 Journal of East China University of Technology(Natural Science)
基金 国家自然科学基金项目(21201033)
关键词 蒙脱土 十六烷基三甲基溴化铵 吸附 montmorillonite hexadecyltrimethylammonium uranium adsorption
  • 相关文献

参考文献20

  • 1刘淑娟,马建国,花榕,林海禄,李芳清.枝状聚合物修饰碳纳米管对铀吸附性能研究[J].东华理工大学学报(自然科学版),2012,35(4):388-393. 被引量:9
  • 2Abdel-Khalek A A, Ali M M, Ashour R M, et al. 2011. Chemical studies on uranium extraction from concentrated phosphoric acid hy u- sing PC88A and DBBP mixture [J]. J. Radioanal. Nucl. Chem. , 290(2) : 353-359.
  • 3Akar S T, Yetimoglu Y, Gedikbey T. 2009. Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification [ J ]. Desalinatio, 244 ( 1 - 3 ) :97-108.
  • 4Bayramoglu G, Celik G, Arica M J. 2006. Studies on accumulation of uranium by fungus Lentinus sajor-caju [J]. J. Hazard. Mater. , 136 (2) :345-353.
  • 5Cojocaru C, Zakrzewska-Trznadel G, Jaworska A J. 2009. Removal of cobalt ions from aqueous solutions by polymer assisted uhrafihration u- sing experimental design approach, part 1 : Optimization of complex- ation conditions [J]. J. Hazard. Mater., 169(1-3): 599-609.
  • 6Dentel S K, Jamrah A I, Sparks D L. 1998. Sorption and cosorption of 1,2,4-triehlorobenzene and tannic acid by organo-elays [ J]. Water Res. , 32(12) : 3689-3697.
  • 7Djedidi Z, Bouda M, Souissi M A, et al. 2009. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewate- ring properties of the generated sludge [J]. J. Hazard. Mater. , 172(2-3) : 1372-1382.
  • 8Hsu Y H, Wang M K, Pai C W, et al. 2000. Sorption of 2,4-dichloro- phenoxy propionic acid by organo-clay complexes [ J ]. Appl. Clay Sci., 16(3-4): 147-159.
  • 9Huh J K, Song D I, Jeon Y W. 2000. Sorption of Phenol and Alkylphe- nols from Aqueous Solution onto Organically Modified Montmorillonite and Applications of Dual-Mode Sorption Model [J]. Sep. Sci. Tech- nol. , 35(2) : 243-259.
  • 10Hussein A E M. 2011. Successive uranium and thorium adsorption from Egyptian monazite by solvent impregnated foam [ J ]. J. Radioanal. Nucl. Chem., 289(2): 321-329.

二级参考文献17

  • 1谭惠民,罗运军.2002.枝状聚合物[M].北京:化学工业出版社:65.
  • 2Baykal A, Toprak M S, Durmus Z, et al. 2012. Synthesis and charac- terization of dendrimer-encapsulated iron and iron-oxide nanoparticles [ J ]. Journal of Superconductivity and Novel Magnetism, 25 (5) : 1541-1549.
  • 3Bursali E A, Merdivan M, Yurdakoc M. 2010. Preconcentration of ura- nium (VI) and thorium (VI) from aqueous solutions using low-cost abundantly available sorbent[ J]. J Radioanal Nucl Chem, 283:471 - 476.
  • 4Craft E, Abu-Qare A, Flaherty M, et al. 2004. Depleted and natural u- ranium: chemistry and toxicological effects [ J ]. Toxicol. Environ. Health, 7 (PartB) : 297-317.
  • 5Dey R K, Patnaik T, Singh V K, et al. 2009. Synthesis of silica sup- ported polyamidoamine for copper adsorption [ J ]. Applied Surface Science, 255: 8176-8182.
  • 6FanQH, TanX L, Li J X,et al. 2009. Sorption of Eu(III) on At- tapulgite Studied by Batch, XPS and EXAFS Techniques[ J]. Envi- ron. Sei. Teehnol, 43: 5776-5782.
  • 7Geng B, Jin Z H, Li T L, et al. 2009. Preparation of chitosan-stabi- lized FeO nanoparticles for removal of hexavalent chromium in water [J]. Science of the Total Environment, 407: 4994-5000.
  • 8Krot K A, De Namor A F D, Aguilar-Comejo A, et al. 2005. Specia- tion, stability constants and structures of complexes of copper ( ii), nickel ( ii), silver(i) and mercury (ii) with pamam dendrimer and re- lated tetraamide ligands [ J]. Inorganica Chimica Acta, 358 : 3497- 3505.
  • 9l?atri A K, Majoros I J, Baker J R. 2002. Dendritic polymer macromo- lecular carriers for drug delivery[J]. Curr Opin Chem Biol, 6(4) : 466-471.
  • 10Sheppard S C, Sheppard M I, Gallerand M, et al. 2005. Derivation of ecotoxicity thresholds for uranium[ J]. Environ. Radioact, 79: 55- 83.

共引文献8

同被引文献118

引证文献11

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部