期刊文献+

考虑不完全检测的冲击模型最优维修策略 被引量:3

Optimization of shock model being maintained under imperfect inspection
下载PDF
导出
摘要 针对制造系统中设备检测不完全的情形,研究基于不完全检测的冲击模型的周期检测、维修联合策略.通过定期检测获知系统的劣化状态以进行必要的预防性维修.在假设系统是退化的且有k个不同故障状态的条件下,以最小化系统运行成本为目标,以检测周期T、系统更换前故障次数N为联合决策变量,利用更新过程理论建立了系统平均费用率C(T,N)的数学模型,并且给出最优联合策略的数值算法.最后借助数值例子演示了该模型,分析了检测水平对系统运行成本的影响. In view of imperfect inspections in manufacturing systems, a shock model with imperfect inspection is considered. The system is periodically inspected so that a preventive maintenance can be performed when necessary. Assume that the system is deteriorating and has k failure types. An explicit expression of average cost rate C(T, N) of system is given by using renewal process and considering inspection cycle T and replacement policy N. A numerical algorithm is given to obtain the optimal joint strategy. Finally, it provides a numerical example to illustrate the proposed model, and also studies the impact of inspection level on average cost rate.
作者 李玲 成国庆
出处 《运筹学学报》 CSCD 北大核心 2013年第4期33-42,共10页 Operations Research Transactions
基金 国家科技支撑计划(No.2012BAH25F02) 江西省教育厅青年科学基金(No.GJJ12507) 江西省自然科学基金(No.20122BAB201044)
关键词 不完全检测 预防性维修 冲击模型 几何过程 平均费用率 更换策略 imperfect inspection, preventive maintenance, shock model, geometric process, average cost rate. replacement Dolicv
  • 相关文献

参考文献16

二级参考文献101

  • 1顾嘉麟,郭建英.截尾数据下威布尔分布的参数估计问题[J].哈尔滨理工大学学报,2005,10(2):61-63. 被引量:7
  • 2吴少敏,张元林.修理情形不同的两部件串联系统的可靠性分析[J].应用数学,1995,8(1):123-125. 被引量:18
  • 3程志君,高大化,黄卓,郭波.不完全维修条件下的视情维修优化模型[J].系统工程与电子技术,2006,28(7):1106-1108. 被引量:15
  • 4金玉兰,蒋祖华,侯文瑞.以可靠性为中心的多部件设备预防性维修策略的优化[J].上海交通大学学报,2006,40(12):2051-2056. 被引量:40
  • 5南京工学院数学教研组.积分变换 (第3版)[M].高等教育出版社,1989..
  • 6Thomas L C. A survey of maintenance and replacement models for maintainability and reliability of multi- item systems[J].Reliability Engineering, 1986, 16:297 - 309.
  • 7Zequeira R I, B'erenguer C. Maintenance cost analysis of a two-component parallel system with failure interaction[J]. Reliability, Availability, Maintainability, and Safety, 2004, 2: 220- 225.
  • 8Murthy D N P, Nguyen D G. Study of two component systems with failure interactions[J]. Naval Research Logistics Quarterly, 1985, 32:239 - 247.
  • 9Barros A, Be'renguer C, Grail A. On the hazard rate process for imperfectly monitored multi-unit systems[J]. Reliability Engineering and System Safety, 2004, 6:1 - 8.
  • 10Zequeira R I, B'erenguer C. On the inspection policy of a two-component parallel system with failure interaction[J].Reliability, Reliability Engineering and System Safety, 2005, 88:99 - 107.

共引文献104

同被引文献35

  • 1李泽慧,刘志,牛一.一般δ-冲击模型中无失效数据的Bayes统计推断[J].应用概率统计,2007,23(1):51-58. 被引量:4
  • 2Esary J D, Marshall A W, Proschan F. Shock models and wear process[J]. Journal of Applied Probability, 1973, 1: 627-649.
  • 3Barlow R E, Proschan F. Statistical theory of reliability and life testing[M]. New York: Holt, Rinehart and Winston, Inc, 1975.
  • 4Lam Y, Zhang Y L. A geometric-process maintenance model for a deteriorating system under a random envi- ronment[J]. IEEE Transactions on Reliability, 2003, 52(1): 83- 90.
  • 5Chen Y L. A bivariate optimal imperfect preventive maintenance policy for a used system with two-type shocks[J]. Computers & Industrial Engineering, 2012, 63: 1227-1234.
  • 6Wang G J, Zhang Y L. δ-shock model and its optimal replacement policy[J]. Journal of Southeast University 2001, 31: 121-124.
  • 7Tang Y Y, Lam Y. A δ-shock maintenance model for a deteriorating system[J]. Journal of Operational Research 2006, 168: 541-556.
  • 8Yu M M, Tang Y H, Wu W Q, et al. Optimal order-replacement policy for a phase-type geometric process model with extreme shocks[J]. Applied Mathematical Modelling, 2014, 38:4323 -4332.
  • 9Tang Y H. The bound of reliability for the system subject to breakdowns[J]. Microelectronics & Reliability, 1995, 35(6): 977-980.
  • 10Lam Y, Zhang Y L. A shock model for the maintenance of a repairable system[J]. Computer and Operations Research, 2004, 31: 1807-1820.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部