期刊文献+

改进的加速鲁棒特征算法在特征匹配中的应用 被引量:24

Application of improved SURF algorithm to feature matching
下载PDF
导出
摘要 提出一种新的多尺度改进加速鲁棒特征(SURF)分块特征匹配算法,定义为Modified-SURF(M-SURF)。此方法在运用图像积分技术的SURF基础上进行分块特征匹配,使计算速度进一步加快;同时使用了基于二阶多尺度模板生成的特征描述子,提高了特征点匹配的鲁棒性。文中首先推导了M-SURF算法二阶多尺度模板公式;然后,介绍了分块匹配的方法,解决了匹配计算速度与精度不能兼得的矛盾,通过实验获得了分块模板的最佳参数;最后,采用欧氏空间最近距离比次近距离的方法衡量匹配的优劣度,利用LMedS方法剔除误匹配点,使匹配精度有较大的提高。对多组图像进行了匹配实验,结果表明:与SURF和尺度不变特征变换(SIFT)算法比较,M-SURF的计算速度提高了28%,匹配精度提高了3%。该算法能够很好地实现特征点的正确匹配,具有很高的使用价值。 A new improved method,Speed Up Robust Features(SURF) matching by image partition,is propoed,which is defined as Modified-SURF(M-SURF).The method uses the feature matching adopting an image integral based on SURF to speed up the computing speed,meanwhile,it takes the second-order feature descriptors derived by the second-order multi-scale gauge to improve the feature matching robustness.The paper firstly deduces the formula of the second-order multi-scale gauge.Then,it introduces the image partition algorithm to resolve the inconsistency between the computing speed and the precision of matching.With an experiment,it obtains the optimal parameters of image partition matching.At last,it weighs the quality of matching by the algorithm of the ratio of the shortest distance and shorter distance in Euclid space,and improves the matching precision by eliminating the false matching dot with the LMedS.The result shows that the computing speed of MSURF has raised more than 28% and the matching precision of M-SURF increases by 3 % as comparing with those of SURF and Scale Invariance Feature Transfer(SIFT) by matching tests for several series of images.This algorithm can achieve a better matching of feature points and has a practical value.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第12期3263-3271,共9页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2006AA703104)
关键词 立体匹配 欧氏空间 特征描述子 特征匹配 尺度空间 stereo matching Euclid space feature descriptor feature matching scale space
  • 相关文献

参考文献24

  • 1赵立荣,柳玉晗,朱玮,曹永刚,于晓波.光电经纬仪单站空间余弦及多站面面交汇的飞机姿态测量[J].光学精密工程,2009,17(11):2786-2793. 被引量:22
  • 2赵立荣,朱玮,曹永刚,柳玉晗,孙俊喜.基于构建最优函数提高飞机姿态测量精度[J].光学精密工程,2012,20(6):1325-1333. 被引量:4
  • 3LOWE D.Object recognition from local scale-invariant features[C].Proc.of the International Conference on Computer Vision (ICCV),Corfu,Greece,1999,1150-1157.
  • 4CSURKA G,DANCE C R,FAN L X,et al..Visual categorization with bags of keypoints[C].In Workshop on Statistical Learning in Computer Vision,ECCV,2004,1-22.
  • 5AGARWAL S,SNAVELY N,SIMON I,et al..Building Rome in a Day[C].Internation Conference on Computer Vison,2009.
  • 6TOLA E,LEPETIT V,DAISY P.An efficient dense descriptor applied to wide-baseline stereo] [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32 (5):815-830.
  • 7FERGUS R,PERONA P,ZISSERMAN A.Object class recognition by unsupervised scale-invariant learning[C].2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003,2:264-271.
  • 8RUBLEE E,RABAUD V,KONOLIGE K,et al..ORB:an efficient alternative to SIFT or SURF[C].2011 IEEE International Conference on Computer Vison (ICCV),2011,2564-2571.
  • 9WERNER K,MARTIN K.Interest point based tracking[C].20th International Conference on Pattern Recognition (ICPR),2010:3549-3552.
  • 10HE W,YAMASHITA T,LU H T,et al..SURF Tracking[C].2009 IEEE 12th International Conference on Computer Vision,Kyoto,Japan,September,2009:1586-1592.

二级参考文献104

共引文献136

同被引文献249

引证文献24

二级引证文献360

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部