期刊文献+

基于ICA的遥感图像的色彩分类方法

Classification of Remote Sensing Image Based on Independent Components Analysis
下载PDF
导出
摘要 根据独立成分分析(ICA)方法和多频谱卫星遥感图像的特点,提出了一种基于ICA的遥感图像色彩分类法。方法使用Fast ICA算法提取遥感图像的色彩独立成分,是RGB反转的结合,具有互补的分布,不受照明的影响。使用最大相似度分类算法对像素进行色彩分类,实验结果表明,方法的色彩分类效果较好,对多频谱遥感图像进行色彩分类十分有效。 This article propose a classification algorithm for satellite remote sensing images based on Inde- pendent Components Analysis(ICA). The algorithm combines the advantage of ICA and muhispectral re- motely sensed images. The algorithm extracts the spectral independent components of multispectral re- , motely sensed images by Fast ICA algorithm. It is the combine of reversion about R, G and B, has comple- mentary distribution and is unacted on illumination. Maximum Likelihood is used to classify the pixels. Experimental results demonstrate that the algorithm is an effective improve method to classify the multi- spectral remotely sensed images.
出处 《航空计算技术》 2013年第6期5-8,共4页 Aeronautical Computing Technique
基金 陕西省教育厅专项科研计划项目(09JK811) 咸阳师范学院专项科研基金资助项目(11XSYK329)
关键词 独立成分分析 遥感图像 分类 independent components analysis sensing image classification
  • 相关文献

参考文献6

二级参考文献55

  • 1李建平.小波分析与信号处理(第九章)[M].重庆:重庆出版社,1997..
  • 2Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery [C]//Proc. SPIE, 2005,5808: 314- 325.
  • 3Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C] // IEEE Conf. Signal Processing Society Workshop, New York, 1999 : 41 - 48.
  • 4Guttman O, Meir R. Nonlinear Fisher discriminant using kernels[C]//IEEE Convention of the Electrical and Electronic Engineers. Israel, 2000: 257- 260.
  • 5Liu Q, Huang R, Lu H, et al. Face recognition using kernel based fisher discriminant analysis[C]//IEEE Conf. Automatic Face and Gesture Recognition, Washington D C, 2002: 205 -211.
  • 6He B, Tong L, Han X, et al. SAR image texture classification based on kernel fisher discriminant analysis[C]//IEEE Conf. Geoscience and Remote Sensing Symposium, Denver, 2006: 3127 -3129.
  • 7Comon P. Independent component analysis: A new concept? [J]. Signal Processing, 1994, 36(3) : 287-314.
  • 8Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
  • 9Bell A, Sejnowski T J. Information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
  • 10Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Trans. on Neural Networks, 2002, 13(6) : 1450- 1464.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部