期刊文献+

砷化镓光导开关中电流丝的自发辐射效应 被引量:4

Spontaneous radiation effects of the current filament in GaAs photoconductive semiconductor switches
原文传递
导出
摘要 应用统计物理方法研究了高增益砷化镓光导开关中电流丝的自发辐射效应.导出了高增益砷化镓光导开关中电流丝的自发辐射规律,在砷化镓样品中引入复合辐射强度与辐射的波长分布函数的概念,近似确定了高增益砷化镓光导开关中电流丝的平均辐射复合系数为(883 nm)≈0.1125,导出了各辐射波长的辐射复合系数与平均辐射复合系数之间的关系,验证了峰值波长为890 nm的光输出能量与实验观察结果吻合,在理论上揭示了电流丝顶部的光生载流子密度的分布规律.结果表明:电流丝的体积面积比值和电流丝内平均载流子密度是影响电流丝辐射效应的两个主要因素,波长876 nm的辐射在紧邻电流丝顶部产生的最大载流子密度具有主导作用,最大光生载流子密度比电流丝内平均载流子密度小1–2个数量级. The spontaneous radiation effects of current filament in high gain gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have been studied by using the statistical-physical method. The spontaneous radiation law of the current filament in high gain GaAs PCSS was derived. In GaAs samples the concepts for the wavelength distribution function of the radiation intensity were introduced. The average radiative recombination coefficient of the current filament in high gain GaAs PCSS, η(883 nm)≈ 0.1125, was approximately determined. The relationship between radiative recombination coefficients of different radiation wavelengths and the average radiative recombination coefficient was deduced. It was verified that the optical output energy of the peak wavelength, 2=890 nm, coincided with the experimental observations. The density distribution of the carrier from the recombination radiation at the tip of the filament is revealed in theory. The results show the ratio of volume to area of the current filament and the average carrier density inside the current filament are two primary factors that affect the radiation effect of current filament. Reabsorption of λ≤876 nm radiations plays a dominant role for the maximum density of carrier from the recombination radiation. The maximum density of carrier from the recombination radiation at the tip of the filament is approximately 1-2 orders of magnitude lower than the average carrier density inside the current filament.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第1期49-54,共6页 Scientia Sinica Physica,Mechanica & Astronomica
基金 四川省科技计划项目资助(编号:2010JY0160)
关键词 砷化镓光导开关 电流丝 辐射定律 辐射复合系数 载流子密度分布 gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS), current filament, radiation law,radiative recombination coefficient, density distribution of carrier
  • 相关文献

参考文献4

二级参考文献53

  • 1Zutavern F J, Loubriel G M, O'Malley M W et Characteristics of current filamentation in high photoconductive semiconductor switching [ R ]. IEEE al. gain Power Modulator Symposium, Myrtle Beach: SC, Conference Record of the 1992 Twentieth: 305-311.
  • 2Loubriel G M, Zutavern F J, Hjalmarson H Pet al.. Measurement of the velocity of current filaments in optically triggered, high gain GaAs switches [J]. Appl. Phys. Lett., 1994, 64(24) : 3323-3325.
  • 3Loubriel G M, Zutavern F J, Mar Aet al.. Longevity of optically activated, high gain GaAs photoconductive semiconductor switches[J]. Plasma Science, IEEE, 1998, Transactions on 26 : 1393-1402.
  • 4Zutavern F J, Baca A G, Chow W W et al.. Electron-hole plasmas in semiconductors [J ]. IEEE Pulsed Power Plasma Science, 2001, 1: 289-293.
  • 5Capps C D, Falk R A, Adams J C. Time-dependent model of an optically triggered GaAs switch[J]. J. Appl. Phys. , 1993, 74 (11): 6645-6654.
  • 6Zhao H, Hadizad P, Hur J Het al.. Avalanche injection model for the lock on effect in high power Photoconductive switches[J]. J. Appl. Phys. , 1993, 73(4): 1807-1812.
  • 7Stout P J, Kushner M J. Modeling of high power semiconductor switches operated in the nonlinear mode[J]. J. Appl. Phys. , 1996, 79(4) : 2084-2090.
  • 8Kambourt K, Hjalmarson H P, Zutavern F Jet al.. Simulation of current filaments in photoconductive semiconductor switches [R]. Proe. 15th International IEEE Pulsed Power Conference, Monterey, CA, 2005. 814-817.
  • 9Blakemore J S. Semiconducting and other major properties of gallium arsenide[J]. J. Appl. Phys., 1982, 53(10): R123- R181.
  • 10Kroemer H. Detailed theory of the negative conductance of bulk negative mobility amplifiers, in the limit of zero ion density[J]. IEEE, Transactions on Electron Devices, 1967, ED-14: 476- 492.

共引文献19

同被引文献42

  • 1黎定国,邓玲娜,刘义保,潘小青.大学物理中微积分思想和方法教学浅谈[J].大学物理,2005,24(12):51-54. 被引量:49
  • 2饶黄云,符五久.大学物理教学中物理思想和方法的渗透[J].东华理工学院学报(社会科学版),2007,26(1):80-83. 被引量:13
  • 3刘鸿.非线性光导开关中的高场畴机制[J].成都大学学报(自然科学版),2007,26(3):228-231. 被引量:4
  • 4巴甫洛夫全集:第5卷[M].北京:人民卫生出版社,1959.
  • 5Klappenberger F, Renk K F, Summer R, et al. Electric-field-in- duced reversible a~anche breakdown in a C.a4s microcrystal due to cross band gap imtmct /on/zat/on [ J ] .Appl Phys I.ett,2003,83 (4) :704 - 706.
  • 6Zutavern F J,Glover S F, Reed K W, et al. Fiber-optically con- trolled pulsed power sw/tches [ J ]. IEEE Trans on Plasma Sci, 2008,36(5) :2533 - 2540.
  • 7Schoenbach K H,Kenney J S,Peterkin F E,et al. Temporal de- velopmeat of electric field structures in photoconductive GaAs sw/tches [ J] .Appl Phys I_ett, 1993,63(15) :2100-2102.
  • 8Loubriel G M,Zutavem F J,Hjalmarson H P,et al. Measurement of the velocity of current filaments in optically triggered, high gain C.aAs sw/tehes [ J]. Appl Phys Left, 1994, 64(24): 3323- 3325.
  • 9Shiehijo H, Hess K. Band-stmeatm-dependent transport and im- pact ionization in GaAs [J] .Phys Rev(B), 1981,23(8):4197- 4207.
  • 10Logan R A, Chynoweth A G, Cohen B G. Avalanche breadown in gallium arsenlde p- n junction [ J ]. Phys Rev, 1962, 128 (6) : 2518 - 2523.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部