摘要
The acceleration theorem of Bloch waves is utilized to construct random potential wells for classical acoustic waves in systems composed of alternating‘cavities’and‘couplers’.One prominent advantage of this method is these‘cavities’and‘couplers’are all monolayer structures.It allows forming more compact classical potential wells,which leads to the miniaturization of acoustic devices.We systematically investigate properties of harmonic,tangent,hyperbolic function,and square classical potential wells in quasi-periodic superlattices.Results show these classical potential wells are analogues of quantum potential wells.Thus some technologies and concepts in quantum potential well fields may be generalized to classical acoustic wave fields.In addition,some abnormal cases regarding forming classical potential wells are also found.
The acceleration theorem of Bloch waves is utilized to construct random potential wells for classical acoustic waves in systems composed of alternating 'cavities' and 'couplers'. One prominent advantage of this method is these 'cavities' and 'couplers' are all monolayer structures. It allows forming more compact classical potential wells, which leads to the miniaturization of acoustic devices. We systematically investigate properties of harmonic, tangent, hyperbolic function, and square classical potential wells in quasi-periodic superlattices. Results show these classical potential wells are analogues of quantum potential wells. Thus some technologies and concepts in quantum potential well fields may be generalized to classical acoustic wave fields. In addition, some abnormal cases regarding forming classical potential wells are also found.
基金
supported by the Fundamental Research Funds for the Central Universities(Grant No.GK201002007)
the National Natural Science Foundation of China(Grant Nos.11174192 and 11274216)
the China Postdoctoral Science Foundation(Grant No.20080441161)