期刊文献+

各向异性介质中两种载流曲线极点的磁场

Magnetic Field at Poles of Two Current-Carrying Curves in Anisotropic Medium
下载PDF
导出
摘要 利用各向异性磁介质中毕奥 -萨伐尔定律的极坐标形式 ,求出用极坐标方程表示的载流蔓叶线和三叶玫瑰线在极点产生的磁场 .它为求解载流曲线在各向异性磁介质中的磁场提供范例 . Since Cartesian coordinate form of Biot Savart law in anisotropic magnetic medium has been derived from field theory of electric network theory, the polar coordinate form of the law can further be derived and magnetic field at the focus of conical curve as expressed by polar coordinate equation r=r(θ) can thus be solved.The problem that is difficult to be solved by Cartesian coordinate form of the law has been solved.By continuously using polar coordinate form of Biot Savart law in anisotropic magnetic medium,the authors solve here magnetic field produced at the pole by current carrying cissoid and trefoil as expressed by polar coordinate equation.Examples are offered here for solving magnetic field in anisotropic magnetic medium.
出处 《华侨大学学报(自然科学版)》 CAS 2000年第4期405-409,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目 福建省自然科学基金资助项目
关键词 磁场 载流曲线 极点 各向异性磁介质 极坐标方程 magnetic field, anisotropy, current carrying curve, pole
  • 相关文献

参考文献4

二级参考文献20

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部