期刊文献+

三阶微分方程的Liapunov型不等式 被引量:1

Liapunov-type Inequality for Differential Equations of Order Three
下载PDF
导出
摘要 研究了三阶微分方程 :y (t) +q(t)y″(t) +P(t)y(t) =0 (q(t) ,p(t)∈C([0 ,+∞ ) ,R) )的振荡解y(t)在其相邻两个或 3个零点间的性质 ,从而得到其系数满足的一些不等式 。 In this paper, the oscillatory solutio n y(t) of differential equations of order three y(t)+q(t)y″(t)+p(t)y(t )=0, (q(t), p(t)∈C ([0,+∞),R)) has been studied. Some prop erties of the oscillatory solution y(t) between consecutive two or three zer o-points have been derived. And some existent results are unified.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2000年第6期597-599,共3页 Journal of Sichuan Normal University(Natural Science)
关键词 Liapunov型不等式 振荡解 三阶微分方程 零点 Liapunov-type inequality Oscillator y solution Third-order differential equations
  • 相关文献

参考文献4

  • 1[1] Liapunov A M. Ann Math Stud (Vol.17)[M]. Princeton:Princeten Univ Press, 1949.
  • 2[2] Eliason S B. A Liapunov inequality for a certain second order nonlinear differential equation[J]. J London Math Soc,1970,2:461~466.
  • 3[3] Pachpatte B G. On Liapunov-type inequalities for certain higher order differential equations[J]. J Math Anal Appl,1995,195:527~536.
  • 4[4] Parhi N, Panigrahi S. On Liapunov-type inequality for third-order differential equations[J]. J Math Anal Appl,1999,233:445~460.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部