期刊文献+

基于氧化物异质结的量子点敏化太阳电池 被引量:1

QUANTUM DOTS SENSITIZED SOLAR CELLS BASED ON OXIDE HETEROJUNCTION
下载PDF
导出
摘要 将半导体钒酸铋(BiVO4)作为光俘获材料,采用连续离子层吸附和反应法(SILAR)将其沉积在纳米晶TiO2多孔薄膜上并用作光阳极制备液态量子点敏化太阳电池。利用紫外可见吸收光谱、XRD和TEM等表征手段深入研究BiVO4前驱体溶液的浓度、离子沉积次数以及浸泡处理时间对BiVO4敏化的TiO2薄膜的影响及机理。结果表明:采用Bi(NO3)3·5H2O和NH4VO3的水溶液作为前驱体溶液时,当NH4VO3水溶液的pH=3,连续沉积20次后,电池具有最佳光伏性能:电池短路电流密度为1.78mA/cm2,光电转换效率达到0.32%。结果表明,BiVO4作为光俘获材料,在量子点敏化太阳电池中具有潜在的应用前景。 The nanocrystalline porous TiO2 film sensitized ware prepared by a simple successive ionic layer with bismuth Vanadate ( BiVO4 ) quantum dots (QDs) adsorption and reaction deposition technique (SILAR). The influence of the concentration of the reactant solutions, number of ion-deposition cycles and the treatment time on the kinetics of layer growth on TiO~ films were studied by UV-vis, XRD, and TEM techniques. When Bi( NO3 )3-5 H2O and NH4VO3 were used as the reactants, with pH = 3, the number of ion-deposition cycles are 20, the assembled BiVO4 solar ceils yield a power conversion efficiency of 0. 32% and a short-circuit current density of 1.78mA/cm2 under AM 1.5 illumination. It is found that BiV04 can be used as an efficient sensitizer for solar cells.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第12期2218-2221,共4页 Acta Energiae Solaris Sinica
基金 科技部国际科技合作课题(2010DFA64240) 国家重点基础研究(973)发展计划(2011CBA00700) 国家高技术研究(863)发展计划(2011AA050527) 合肥物质科学中心发展计划(2012FXZY006)
关键词 太阳电池 量子点 钒酸铋 连续离子层吸附和反应法 solar cells quantum dots bismuth vanadate successive ionic layer adsorption reaction deposition
  • 相关文献

参考文献15

  • 1O' regan Brian, Gr:itzel Michael. A low-cost, high- efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346) : 737-740.
  • 2Yella Aswani, Lee Hsuan-Wei, Tsao Hoi Nok, et al. Porphyrin-sensitized solar cells with cobalt (ll/lII)- based redox electrolyte exceed 12 percent efficiency[ J]. Science, 2011, 334(6056): 629--634.
  • 3Sun Wen-Tao, Yu Yuan, Pan Hua-Yong, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [ J ]. Journal of the American Chemical Society, 2008, 130(4): 1124-1125.
  • 4Robel Istv:m, Subramanian Vaidyanathan, Kuno Masaru, et al. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [ J ]. journal of the American Chemical Society, 2006, 128(7) : 2385-2393.
  • 5Rath Arup K, Bernechea Maria, Martinez Luis, et al. Solution-processed heterojunction solar ceils based on p-type PbS quantum dots and n-type BizS3 nanocrystals [J]. Advanced Materials, 2011, 23(32): 3712-3717.
  • 6Liu Yao, Gibbs Markelle, Puthussery James, et al, Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids [ ] ]. Nano Letters, 2010, 10(5): 1960-1969.
  • 7Tubtimtae Auttasit, Wu Kun-Lun, Tung Hao-Yu, etal. Ag2S quantum dot-sensitized solar cells [ J ]. Electrochemistry Communications, 2010, 12 ( 9 ): 1158-1160.
  • 8Im Jeong-Hyeok, Lee Chang-Ryul, Lee Jin-Wook, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088--4093.
  • 9Noh Jun Hang, Im Sang Hyuk, Heo Jin Hyuek, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [ J ]. Nano Letters, 2013, 13(4) : 1764-1769.
  • 10Zhang Jiyuan, Luo Wenjun, Li Wei, et al. A dyefree photoeleetroehemieal solar cell based on BiVO4 with a long lifetime of photogenerated carriers [ J ]. Electrochemistry Communications, 2012, 22 : 49-52.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部