期刊文献+

AP1000设计基准事故试验热冲击过程数值模拟 被引量:5

Numerical Simulation on Thermal Shock Process in AP1000 DBA Testing
下载PDF
导出
摘要 针对AP1000核电厂安全级设备鉴定设计基准事故(DBA)模拟试验第1s热冲击过程,构建了过热蒸汽由储汽罐充入试验仓的模型.利用Fluent流体计算软件对瞬态热冲击过程进行了数值模拟,得到试验系统内气体温度、压力、流速、组分质量分数瞬态变化过程及其空间分布状态.结果表明:超音速蒸汽射流进入试验仓,经挡板减速并改变方向,与仓内空气混合,同时压缩空气,使仓内介质温度和压力快速上升并达到要求值;试验仓内瞬态压力分布均匀,但温度分布取决于蒸汽的流动,随着蒸汽不断充满试验仓,1s后仓内温度分布趋于均匀;储汽罐释放高温高压过热蒸汽充入试验仓的工艺可以满足DBA试验第1s热冲击试验要求. A model was set up to simulate the thermal shock process in first second of design basis accident (DBA) testing for AP1000 nuclear power plant safety related equipment, in which superheated steam was injected into the test chamber from a steam accumulator. Using Fluent software, numerical simulation was carried out to the transient thermal shock, so as to obtain transient evolution and space distribution of vari- ous factors in the system, such as the temperature, pressure, velocity and species concentration etc. Re- sults show that after entering into test chamber, the supersonic steam jet is to be blocked by a baffle plate, which then mixes with and compresses the air inside the chamber, and finally makes the temperature and pressure of the medium rapidly get up to required values; the pressure distribution transiently gets uniform in the chamber, but the temperature distribution depends on the steam flow, which, with the continuous filling of steam, tends to get uniform after one second; by injecting high temperature high-pressure super- heated steam into test chamber from accumulator, the process can satisfy the requirements of DBA thermal shock testing within one second.
出处 《动力工程学报》 CAS CSCD 北大核心 2014年第1期25-31,共7页 Journal of Chinese Society of Power Engineering
基金 国家科技重大专项资助项目(2013ZX06005004) 上海市科学技术委员会科研资助项目(12DZ2293800)
关键词 AP1000核电厂 设计基准事故试验 热冲击 数值模拟 AP1000 nuclear power plant design basis accident testing thermal shock numerical simulation
  • 相关文献

参考文献7

  • 1Institute of Electrical and Electronics Engineers. IEEE standard for qualifying class 1E equipment for nuclear power generating stations[S].New York,USA:The Institute of Electrical and Electronics Engineers,Inc,2004.
  • 2王琭.LOCA试验质量影响因素分析[J].中国核电,2008,1(2):140-145. 被引量:2
  • 3Association Francaise pour les règles de Conception. de construction et de surveillance en exploitation des matériels des Chaudières Electro Nucléaires(AFCEN).NF M 64-001 Qualification of electric equipment in a nuclear accident environment[S].Paris,France:Association Francaise de Normalisation (AFNOR),1991.
  • 4龚国祥;李骥;田金良.核电站LOCA试验装置[P]中国,CN 202018832 U,2011.
  • 5颜昌彪.LOCA鉴定试验台设计研究[J].广东化工,2011,38(2):40-42. 被引量:6
  • 6刘强,帅剑云,黄卫星,周国丰,张美玲.LOCA炉封闭大空间内承压热冲击过程数值模拟研究[J].化工装备技术,2009,30(1):39-43. 被引量:4
  • 7赵承庆;姜毅.气体射流动力学[M]{H}北京:北京理工大学出版社,1998129-143.

二级参考文献10

  • 1Mota J P B, Rodrigues A E, Tondeur D. A simulation model of a high - capacity methane adsorptive storage system [ J ] . Adsorption, 1995, 1 (1): 17-27.
  • 2英国ATE公司.CFX4.3技术手册[M].2000.
  • 3Ostrach S. Natural convection heat transfer in cavities and cells [J] . Proc 7th International Heat Transfer Conference, 1982 , (1): 367-379.
  • 4Hoogendoom C J. Natural convection in enclosures [ J] . Proc 8th International Heat Transfer Conference, 1986 (1) : 111 - 120.
  • 5杨世铭 张超 许志雄.高Ra数条件下封闭空间内换热的实验研究.工程热物理学报,1988,.
  • 6张美玲.LOCA鉴定试验台控制系统研究[c].2009年电力自动化创新论坛.
  • 7刘强.LOCA鉴定试验台热冲击过程数值模拟研究[c].国电机工程学会核能发电分会,2009年学术年会,2009.11.
  • 8.IEEE Standard for Qualification of Actuators for Power-Op-erated Valve Assemblies With Safety-Related Functions for Nuclear Power Plants[].(IEEE Std-).
  • 9胡松涛,廉乐明,李力能.封闭空腔复合传热过程热力学力和流的研究[J].哈尔滨建筑大学学报,1999,32(3):68-71. 被引量:1
  • 10吴海玲,李悦,陈听宽,卢冬华,罗毓珊.PTS瞬态流动与换热数值模拟研究[J].核科学与工程,2002,22(2):119-124. 被引量:3

共引文献6

同被引文献40

  • 1蔡建羡,阮晓刚,甘家飞.两轮自平衡机器人系统建模与模糊自整定PID控制[J].北京工业大学学报,2009,35(12):1603-1607. 被引量:20
  • 2赵月晶,乐恺,闫小克,张欣欣.水热管等温特性的数值模拟分析[J].化工学报,2011,62(S2):61-67. 被引量:6
  • 3朱玉琴,毕勤成,曹子栋,陈听宽,王为术,邓之安.分离式热管蒸发段工质流动不稳定性的试验研究[J].核动力工程,2006,27(2):45-49. 被引量:3
  • 4REYES J, HOCHREITER L. Scaling analysis for the OSU AP600 test facility (APEX)J-J. Nuclear Engi- neering and Design,1998, 186(1/2): 53-109.
  • 5FRIEND M T, WRIGHT R F, HUNDAL R,et al. Simulated AP600 response to small-break loss-of- coolant-accident and non-loss-of-coolant-accident e- vents: anlaysis of SPES-2 integral test results [J]. Nuclear Technology, 1998, 122 ( 1 ) : 19-42.
  • 6SHOTKIN I. M, KUKITA Y. Implications of the ROSA/AP600 high- and intermediate pressure test results[-J2. Nuclear Technology, 1997, 119 (3): 217- 234.
  • 7PURHONEN H, PUUSTINEN M, RIIKONEN V,et al. PACTEL integral test facility-description of versa tile applications[J]. Annals of Nuclear Energy, 2006, 33(11/12) :994-1009.
  • 8KIM Y S,CHOI K Y,PARK H S,et al. Commissio- ning o{ the ATLAS thermal-hydraulic integral test fa cility[J]. Annals of Nuclear Energy, 2008, 35 (10) : 1791-1799.
  • 9ISHII M, KATAOKA I. Scaling laws for thermal-by draulic system under single phase and two-phase nat ural circulation E J]. Nuclear Engineer and Design, 1984, 81(3) :411-425.
  • 10AGBODEMEGBE V Y, XU Cheng, AKAHO E H K, et al, Correlation for cross flow resistance coefficient using STAR-CCM + sirnulation data for flow of water through rod bundle supported by spacer grid with split-type mixing vane [J]. Nuclear Engineering and Design, 2015, 285(15): 134-149.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部