摘要
为了提高不等长间歇过程故障诊断的性能,同时降低算法的复杂度,提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离,并将这些统计特征组合成一个等长的特征向量;然后运用主元分析(PCA)进行过程监视。半导体工业实例的仿真结果表明,与传统的多向主元分析(MPCA)方法相比,基于统计特征的不等长间歇过程故障诊断算法的故障诊断率提高15%,故障检测时间减少了0.002 s,因此该算法具有很好的故障诊断性能。
In order to improve the fault diagnosis performance of the uneven-length batch processes, and decrease the complexity of the algorithm, this paper presented fault diagnosis method based on statistic features for uneven-length batch processes. Firstly, it calculated the means, variance, skewness, kurtosis and the Euclidean distance between two variables for each uneven-length batch. Secondly, it combined these statistic features into an even-length feature vector. Lastly, it used principal component analysis (PCA) to the feature vectors for monitoring the batch processes. The monitoring results of an industrial example show that compared with traditional MPCA, the fault diagnosis method based on statistic features for uneven-length batch processes increases 15% of the fault diagnosis rate and reduces 0. 002 second of the fault diagnosis time, so it has good fault detection performance.
出处
《计算机应用研究》
CSCD
北大核心
2014年第1期128-130,共3页
Application Research of Computers
基金
国家自然科学基金重点资助项目(61034006)
国家自然科学基金资助项目(61174119)
辽宁省博士启动基金项目(20131089)
辽宁省教育厅资助项目(L2012139)
关键词
故障诊断
不等长间歇过程
统计特征
多向主元分析
fault diagnosis uneven-length batch processes statistic features multiway principal component analysis (MPCA)