期刊文献+

基于统计特征的不等长间歇过程故障诊断研究 被引量:9

Fault diagnosis for uneven-length batch processes based on statistic features
下载PDF
导出
摘要 为了提高不等长间歇过程故障诊断的性能,同时降低算法的复杂度,提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离,并将这些统计特征组合成一个等长的特征向量;然后运用主元分析(PCA)进行过程监视。半导体工业实例的仿真结果表明,与传统的多向主元分析(MPCA)方法相比,基于统计特征的不等长间歇过程故障诊断算法的故障诊断率提高15%,故障检测时间减少了0.002 s,因此该算法具有很好的故障诊断性能。 In order to improve the fault diagnosis performance of the uneven-length batch processes, and decrease the complexity of the algorithm, this paper presented fault diagnosis method based on statistic features for uneven-length batch processes. Firstly, it calculated the means, variance, skewness, kurtosis and the Euclidean distance between two variables for each uneven-length batch. Secondly, it combined these statistic features into an even-length feature vector. Lastly, it used principal component analysis (PCA) to the feature vectors for monitoring the batch processes. The monitoring results of an industrial example show that compared with traditional MPCA, the fault diagnosis method based on statistic features for uneven-length batch processes increases 15% of the fault diagnosis rate and reduces 0. 002 second of the fault diagnosis time, so it has good fault detection performance.
出处 《计算机应用研究》 CSCD 北大核心 2014年第1期128-130,共3页 Application Research of Computers
基金 国家自然科学基金重点资助项目(61034006) 国家自然科学基金资助项目(61174119) 辽宁省博士启动基金项目(20131089) 辽宁省教育厅资助项目(L2012139)
关键词 故障诊断 不等长间歇过程 统计特征 多向主元分析 fault diagnosis uneven-length batch processes statistic features multiway principal component analysis (MPCA)
  • 相关文献

参考文献17

  • 1NOMIKOS P,MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J].AICHE Journal,1994,(08):1361-1375.
  • 2NOMIKOS P,MACGREGOR J F. Multivariate SPC charts for monitoring batch processes[J].TECHNOMETRICS,1995,(01):41-59.
  • 3NOMIKOS P,MACGREGOR J F. Multi-way partial least squares in monitoring batch processes[J].Chemometrics and Intelligent Laboratory Systems,1995,(01):97-108.
  • 4CAMACHO J,PIC(O) J. Multi-phase principal component analysis for batch processes modelling[J].Chemometrics and Intelligent Laboratory Systems,2006,(02):127-136.
  • 5CAMACHO J,PIC(O) J. Online monitoring of batch processes using multi-phase principal component analysis[J].Journal of Process Control,2006,(10):1021-1035.
  • 6HUA Kun-lun,YUAN Jing-qi. Multivariate statistical process control based on multiway locality preserving projections[J].Journal of Process Control,2008,(7-8):797-807.
  • 7YU Jie,QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J].Industrial and Engineering Chemistry Research,2009,(18):8585-8594.
  • 8GUO Jin-yu,LI Yuan,WANG Guo-zhu. Batch process monitoring based on multilinear principal component analysis[A].2010.413-416.
  • 9CHANG Yu-qing,LU Yun-song,WANG Fu-li. Sub-stage PCA modelling and monitoring method for uneven-length batch processes[J].The Canadian Journal of Chemical Engineering,2012,(01):144-152.
  • 10KASSIDAS A,MACGREGER J F,TAYLOR P A. Synchronization of batch trajectories using dynamic time warping[J].AICHE Journal,1998,(04):864-875.

同被引文献62

  • 1李鑫滨,陈云强,张淑清.基于LS-SVM多分类器融合决策的混合故障诊断算法[J].振动与冲击,2013,32(19):159-164. 被引量:10
  • 2刘世成,王海清,李平.青霉素生产过程的在线统计监测与产品质量控制[J].计算机与应用化学,2006,23(3):227-232. 被引量:9
  • 3Karimi H R, Zapateiro M, Luo N. A linear matrix inequality ap- proach to robust fault defection filter design of linear systems with mixed time varying delays and nonlinear perturbations [0"] . Journal of the Franklin Institute, 2010, 347 (6): 957-973.
  • 4Bellali B, Hazzaba A, Bousserhane I K, et al. Parameter estimation for fault diagnosis in nonlinear systems by ANFIS [-J] . Procedia Engineering, 2012, 29 (6): 2016 -2021.
  • 5Bian M M, Shi J, Wang S P. FTA--based fault diagnosis expert system for hydraulic equipment Ec [A] . Fluid Power and Mecha- tronies (FPM) [C] . Beijing: 2011:959 - 963.
  • 6Chang Y Q, Lu Y S, Wang F L, et al. Sub--stage PCA modelling and monitoring method for uneven--length batch processes I-J]. Canadian Journal of Chemical Engineering, 2012, 90 (1) :144 - 152.
  • 7Chakrabarti C, Rammohan R, Luger G F. Diagnosis using a first --order stochastic language that learns [-J] . Expert Systems with Applications, 2007, 32 (3): 832-840.
  • 8Bearing Data Center. Case Western Reserve University [EB/OL] . http: //csegroups. case. edu/bearingdatacenter/pa- ges/download-- data-- file.
  • 9MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S, et al. Survey of multi-objective evolutionary algorithms for data mining: part II [J]. IEEE transactions on evolutionary computation, 2014, 18(1): 20-35.
  • 10MUTEKI K, MACGREGOR J, UEDA T. Estimation of missing data using latent variable methods with auxiliary information [J]. Chemometrics and intelligent laboratory systems, 2005, 78(1): 41-50.

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部