期刊文献+

支持位置追溯的射频识别移动对象索引机制

Index mechanism supporting location tracing for radio frequency identification mobile objects
下载PDF
导出
摘要 随着射频通信技术的不断成熟及硬件制造成本的不断降低,射频识别(RFID)技术已开始应用于物品实时监控、跟踪与追溯领域。在供应链应用中,RFID对象数量繁多而且位置经常发生变化,如何从海量数据中查询标签对象的位置及其变化历史已成为供应链追溯亟须解决的问题。针对RFID移动对象特征及追溯查询需求,提出了一种有效的时空索引机制CR-L,并详细讨论了CR-L的结构及维护算法,包括插入、删除、二分裂及惰性分裂算法等。针对对象查询,CR-L利用读写器、时间及对象等三维信息设计了新的最小外界矩形(MBR)值计算原则,将相同读写器在相近时间内探测到的轨迹尽可能聚集于相同或相邻节点。对于轨迹查询,采用单链表将相同对象的轨迹链接起来。实验结果表明,所提索引机制具有较好的查询效率和较低的空间占用率。 As the radio frequency communication technology gets more mature and the hardware manufacturing cost decreases, Radio Frequency IDentification (RFID) technology has been applied in the domains of real-time object monitoring, tracing and tracking. In supply chain applications, there are usually a great number of RFID objects to be monitored and traced, and objects' locations are changed essentially, so how to query the locations and the histories of location change of the RFID objects, from the huge volume of RFID data, is an urgent problem to be addressed. Concerning the characteristics of mobile RFID objects and the tracing query requirements in supply chain applications, an effective spatio-temporal index, called as CR-L, was put forward, and its structure and maintenance algorithms, including insertion, deletion, bi-splitting, and lazy splitting, were discussed in detail. In order to support object queries effectively, a new calculation principle of Minimum Bounding Rectangle (MBR), considering the three dimensional information including readers, time and objects, was presented to cluster the trajectories by the same reader at close time into the same node or the neighboring nodes. As to trajectory queries, a linked list was designed to link all trajectories belonging to the same object. The experimental results verify that CR-L has better query efficiency and lower space utilization rate than the existing method.
出处 《计算机应用》 CSCD 北大核心 2014年第1期58-63,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61262009) 江西省自然科学基金资助项目(20122BAB201032) 江西省优势科技创新团队建设计划项目(20113BCB24008) 江西省教育厅重点科技项目(GJJ10694 GJJ12259)
关键词 射频识别 移动对象 时空索引 位置追溯 最小外界矩形 Radio Frequency IDentification (RFID) moving object spatio-temporal index location tracing Minimum Bounding Rectangle (MBR)
  • 相关文献

参考文献12

  • 1TU W J,ZHOU W,PIRAMUTHU S.Identifying RFID-embeddedobjects in pervasive healthcare applications[J].Decision SupportSystems,2009,46(2):586-593.
  • 2WELBOURNE E,BATTLE L,COLE G,et al.Building the Inter-net of things using RFID[J].IEEE Internet Computing,2009,13(3):48-55.
  • 3AGGARWAL C C.Managing and mining sensor data[M].Berlin:Springer-Verlag,2013.
  • 4BAN C H,HONG B H,KIM D H.Time parameterized interval R-tree for tracing tags in RFID systems[C]// Proceedings of the 16thInternational Conference of Database and Expert Systems Applica-tions,LNCS 3588.Berlin:Springer-Verlag,2005:503-513.
  • 5LEE D,PARK J.RFID enabled supply chain traceability:existingmethods,applications and challenges[EB/OL].[2012-10-10].ht-tp://www.intechopen.com/books/sustainable-radio-frequency-i-dentification-solutions/rfid-enabled-supply-chain-traceability-exist-ing-methods-applications-and-challenges.
  • 6HUANG W P,UN P L,LIN H Y.Optimizing storage utilization inR-tree dynamic index structure for spatial databases[J].Journal ofSystems and Software,2001,55(3):291-299.
  • 7ELLIS T K,ROUSSOPOULOS N,FALOUTSOS C.The R +-tree:adynamic index for multi-dimensional objects[C]// Proceedings ofthe 13th International Conference on Very Large Data Base.SanFrancisco:Morgan Kaufmann,1987:507-518.
  • 8BECKMANN N,KRIEGEL HP.The R*-tree:an efficient and ro-bust access method for points and rectangles[C]// Proceedings ofthe 1990 ACM SIGMOD International Conference on Management ofData.New York:ACM Press,1990; 322-331.
  • 9XIA T,ZHANG D.Improving the R*-tree with outlier handlingtechniques[C]// Proceedings of the 13th Annual ACM Workshopon Geographic Information Systems.New York:ACM Press,2005:125-134.
  • 10FU Y C,HU Z Y,GUO W,et al QR-tree:a hybrid spatial indexstructure[C]// Proceedings of the 2rd International Conference onMachine Learning and Cybernetics.Washington,DC:IEEE Com-puter Society,2003:459-463.

二级参考文献8

  • 1Guttman A.R-tree:A Dynamic Index Structure for Spatial Searching[C].In:Proc.of 20^th Int.Conf.on Very Large Data Bases,Morgan Kaufmann,1984
  • 2Beckmann N,Kriegel H P,Schneider R,et al.The R*-tree:An Efficient and Robust Access Method for Points and Rectangles[C].In:Proc.of ACM Intl.Conf.on the Management of Data (SIGMOD),1990.322~331
  • 3Kamel I,Faloutsos C.Hilbert R-tree:An improved R-tree using fractals.In:Proc.of the 20^th VLDB,1994.500~509
  • 4Huang P W,Lin P L,Lin H Y.Optimizing storage utilization in R-tree dynamic index structure for spatial database.Journal of Systems and Software,2001,55(2):291~299
  • 5Brakatsoulas S,Pfoser D,Theodoridis Y.Revisiting R-Tree Construction Principles[C].In:Proc.of 6th East European Conf.on ADBIS,Slovakia,2002
  • 6Gaede V,Gunther O.Multidimensional access methods.ACM Computing Surveys,1998,30(2):170~231
  • 7Bohm C,Berchtold S,Keim D A.Searching in high-dimensional spaces:Index structures for improving the performance of multimedia database.ACM Computing Surveys,2001,33(3):322~373
  • 8Han J W,Kamber M.Data Mining:Concepts and Techniques[M].U.S:Morgan Kaufmann Publishers,Inc,2001

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部