期刊文献+

基于小整数解问题上的格签名方案及其应用 被引量:3

Lattice signature and its application based on small integer solution problem
下载PDF
导出
摘要 在随机预言模型下,基于小整数解(SIS)困难问题,提出了一种格签名方案,说明了格签名方案的参数选取规则。文中选取不同参数生成的签名密钥长度进行对比;然后论证该签名的安全性和有效性;最后,为了解决认证方案中对多方认证的公平性、同时性和可靠性问题,将签名方案与保密通信中的密钥分发和托管结合起来,基于数学上矩阵分解理论的奇异值分解(SVD)算法,提出一种新的授权与认证方案。 A lattice signature scheme was proposed and some parameter choosing rules were illustrated concerning Small Integer Solution (SIS) problem and random oracle model of lattice. Then the results of the length of the keys that were generated under different parameter circumstances were compared. Afterwards the security and efficiency with the signature scheme were verified. At last, for the purpose of fairness, and reliability in multipartite authentication, the signature scheme was combined with key distribution and escrow, a new authentication scheme with the Singular Value Decomposition (SVD) algorithm based on mathematical matrix decomposition theory was proposed.
出处 《计算机应用》 CSCD 北大核心 2014年第1期78-81,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61070219 61370188)
关键词 格签名方案 小整数解问题 随机预言模型 奇异值分解算法 多方授权认证 lattice signature scheme Small Integer Solution (SIS) problem random oracle model Singular Value Decomposition (SVD) algorithm muhipartite authentication
  • 相关文献

参考文献13

  • 1HOFFSTEIN J,PIPHER J,SILVERMAN J H.NTRU:a new highspeed public key cryptosystem[C]// Algorithm Number Theory-ANTS III.Berlin:Springer-Verlag,1998:267-288.
  • 2MICCIANCIO D.Generalized compact knapsacks,cyclic lattices,and effcient one-way functions[J].Computational Complexity,1997,16(4):365-411.
  • 3HOFFSTEIN J,PIPHER J,SILVERMAN J H.NSS:the NTRUsignature scheme[C]// Proceedings of Cryptology Eurocrypt 2001.Berlin:Springer-Verlag,1997:211-228.
  • 4HOFFSTEIN J,PIPHER J,SILVERMAN J H.NSS:an NTRU lat-tice-based signature scheme[C]// Proceedings of Cryptology Euro-crypt 2001.Berlin:Springer-Verlag,2001:123-137.
  • 5李筱熠.一种基于NTRU格的数字签名[J].上海工程技术大学学报,2009,23(1):56-59. 被引量:3
  • 6CASH D,HOFHEINZ D.Bonsai trees,or how to delegate a latticebasis[C]// Proceedings of the 29 th Annual International Conferenceon Theory and Applications of Cryptographic Techniques.Beilin:Springer-Verlag,2010:523-552.
  • 7王凤和,胡予濮,王春晓.基于格的盲签名方案[J].武汉大学学报(信息科学版),2010,35(5):550-553. 被引量:9
  • 8田苗苗,黄刘生,杨威.高效的基于格的环签名方案[J].计算机学报,2012,35(4):712-718. 被引量:17
  • 9CHANG C C,CHANG Y F.Signing a digital signature without u-sing one-way Hash functions and message redundancy schemes[J].IEEE Communications Letters,2004,8(8):485-487.
  • 10FIAT A,SHAMIR A.How to prove yourself:practical solutions toidentification and signature problems[C]// Proceedings of Cryptol-ogy Eurocrypt 1986.London:Springer-Verlag,1987:186-194.

二级参考文献16

  • 1余位驰,张文芳,何大可.一种最短向量已知格的生成方法[J].计算机工程,2006,32(15):19-21. 被引量:2
  • 2CAI J Y. Some recent progress on the complexity of lattice problems[C]//Processings of the 14th IEEE Conference on Computational Complexity, Washington: IEEE Computer Society, 1999 : 158 - 178.
  • 3HOFFSTEIN J,PIPHER J. NTRUSign: digital signatures using the NTRU[EB/OL]. (2002 - 04 - 02) E2003 - 04 - 12 ]. http://www.ntru. com/cryptolab/ articles.htm.
  • 4DINUR I, KINDLER G, SAFRA S. Approximating CVP to within almost polynomial factors is NP-hard[C] //Processings of the 39^th Annual Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 1998 : 99.
  • 5Chaum D. Blind Signatures for Untraceable Payments[C]. Crypto 1982, California,1983.
  • 6Camenisch J,Koprowski M, Warinschi B. Effcient Blind Signatures Without Random Oracles[C]. Security in Communicalion Networks, Amalfi, Italy, 2004.
  • 7Okamoto T. Efficient Blind and Partially Blind Signatures Without Random Oracles[C]. Theory of Cryptography Conference (TCC) 2006, LNCS 3876, New York,2006.
  • 8Bresson E, Monnerat J, Vergnaud D. Separation Results on the One More Computational Problems [C]. RSA Conference (CT-RSA) 2008, San Francisco, CA,2008.
  • 9Shor P W. Polynomial time Algorithm for Prime Factorizeation and Discrete Logarithm on a Quan rum Computer [J]. SIAM Journal on Computing, 1997, 26(5):1 484 -1 509.
  • 10Lyubashevsky V, Micciancio D. Asymptotically Efficient Lattice Based Digital Signature[C].TCC2008, LNCS 4948, New York,2008.

共引文献26

同被引文献12

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部