期刊文献+

解决高维优化问题的差分进化算法 被引量:9

Differential evolution algorithm for high dimensional optimization problem
下载PDF
导出
摘要 针对高维优化问题难以解决并且优化耗费时间长的问题,提出了一种解决高维优化问题的差分进化算法。将协同进化思想引入到差分进化领域,采用一种由状态观测器和随机分组策略组成的协同进化方案。其中,状态观测器根据搜索状态反馈信息适时地调用随机分组策略重新分组;随机分组策略将高维优化问题分解为若干较低维的子问题,而后分别进化。该方案有效地增强了算法解决高维优化问题的搜索速度和搜索能力。经典型的实例测试,并与其他一流差分进化算法比较,实验结果表明:所提算法能有效地求解不同类型的高维优化问题,在搜索速度方面有明显提升,尤其对可分解的高维优化问题极具竞争力。 In order to solve the problem that high dimensional optimization problem is hard to optimize and time- consuming, a Differential Evolution for High Dimensional optimization problem (DEHD) was proposed. By introducing coevolutionary to differential evolution, a new coevolution scheme was adopted, which consisted of state observer and random grouping strategy. Specifically, state observer activated random grouping strategy according to the feedback of search status while random grouping strategy decomposed high dimensional problem into several smaller ones and then evolved them separately. The scheme enhanced the algorithm's search speed and effectiveness. The experimental results show that the proposed algorithm is effective and efficient while solving various high dimensional optimization problems. In particular, its search speed improves significantly. Therefore, the proposed algorithm is competitive on separable high dimensional problems.
作者 王旭 赵曙光
出处 《计算机应用》 CSCD 北大核心 2014年第1期179-181,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(61271114) 上海市教委科研创新重点项目(14ZZ068)
关键词 进化算法 差分进化 协同进化 分组 高维优化 evolutionary algorithm differential evolution coevolution grouping high dimensional optimization
  • 相关文献

参考文献12

  • 1YUEN S Y,CHOW C K.A genetic algorithm that adaptively mu-tates and never revisits[J].IEEE Transactions on Evolution Compu-tation,2009,13(2):454-472.
  • 2RAHNAMAYAN S,WANG G G.Solving large scale optimizationproblems by Opposition-based Differential Evolution(ODE)[J].WSEAS Transactions on Computers,2008,7(10):1792-1804.
  • 3BERGH F V D,ENGELBRECHT A P.A cooperative approach toparticle swarm optimization[J].IEEE Transactions on EvolutionaryComputation,2004,8(3):225-239.
  • 4WANG Y P,DANG C Y.An evolutionary algorithm for global opti-mization based on level-set evolution and latin squares[J].IEEETransactions on Evolutionary Computation,2007,11(5):579-595.
  • 5STORN R,PRICE K.Differential evolution:a simple and efficientheuristic for global optimization over continuous spaces[J].Journalof Global Optimization,1997,11(4):341-359.
  • 6QIN A K,SUGANTHAN P N.Self-adaptive differential evolutionalgorithm for numerical optimization[C]// Proceedings of IEEECongress on Evolutionary Computation.Piscataway,NJ:IEEEPress,2005:1785-1791.
  • 7QIN A K,HUANG V L,SUGANTHAN P N.Differential evolutionalgorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionaiy Computation,2009,13(2):398-417.
  • 8BREST J,GREINER S,BOSCOVIC B,et al.Self-adapting controlparameters in differential evolution:a comparative study on numeri-cal benchmark problems[J],IEEE Transactions on EvolutionaryComputation,2006,10(6):646-657.
  • 9WANG X,ZHAO S G.Differential evolution algorithm with self-a-daptive population resizing mechanism[J/OL].Mathematics Prob-lems in Engineering,2013,2013:Article ID 419372[2013-05-05].http://downloads,hindawi.com/journals/mpe/2013/419372.pdf.
  • 10ZHANG J Q,SANDERSON A C.JADE:adaptive differential evo-lution with optional external archive[J].IEEE Transactions on Ev-olutionary Computation,2009,13(5):945-958.

同被引文献74

引证文献9

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部