期刊文献+

基于协同过滤的可信Web服务推荐方法 被引量:3

Trustworthy Web service recommendation based on collaborative filtering
下载PDF
导出
摘要 为了实现对可信Web服务的推荐,在分析了Web服务推荐技术与电子商务推荐技术的不同的基础上,提出了一种基于协同过滤的可信Web服务推荐方法。首先,根据已有成果对待组装应用的可信需求进行评估,根据此需求对相似用户进行首次筛选;然后在首次筛选的用户中,根据用户使用服务后的评分数据和用户信息来对相似用户进行二次筛选,经过两次筛选得到最终推荐用户。在根据用户对服务的评分数据计算用户之间的相似性时,考虑了不同服务对于用户间相似性的贡献值;在根据用户信息计算用户之间的相似性时,考虑到用户信息之间非线性的特点,引入了欧几里得距离公式来计算其相似值;在产生推荐的过程中还考虑了不诚实用户和用户数不足的问题。模拟实验结果表明该方法能够有效地对可信Web服务进行推荐。 In order to recommend trustworthy Web services, the differences between Web service recommendation and electronic commerce recommendation were analyzed, and then based on the collaborative filtering recommendation algorithm, a trustworthy Web service recommendation approach was proposed. At first, non-functional requirements of trustworthy software were evaluated. According to the evaluation results, similar users were filtered for the first time. Then, by using the rating information and basic information, the similar users were filtered for the second time. After finishing these two filtering procedures, the final recommendation users were determined. When using users' ratings information to calculate the similarity between the users, the similarity of the different services to the users was taken into consideration. When using users' basic information to calculate the similarity between the users, the Euclidean distance formula was introduced because of the nonlinear characteristics of the users. The problems of the dishonesty and insufficient number of users were also considered in the approach. At last, the experimental results show that the recommendation approach for trustworthy Web services is effective.
出处 《计算机应用》 CSCD 北大核心 2014年第1期213-217,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61379032 61262024 61262025) 云南省应用基础研究计划项目(2012FB118 2012FB119) 云南省教育厅科学研究基金资助项目(2012Y257 2012C108) 云南省软件工程重点实验室开放基金资助项目(2011SE09) 云南大学"中青年骨干教师培养计划"专项经费资助项目
关键词 WEB服务 协同过滤 非功能需求 可信服务 相似用户 Web service collaborative filtering Non-Functional Requirement (NFR) trustworthy service similar user
  • 相关文献

参考文献16

二级参考文献179

  • 1陈火旺,王戟,董威.高可信软件工程技术[J].电子学报,2003,31(z1):1933-1938. 被引量:115
  • 2林闯,彭雪海.可信网络研究[J].计算机学报,2005,28(5):751-758. 被引量:253
  • 3闵应骅.容错计算二十五年[J].计算机学报,1995,18(12):930-943. 被引量:16
  • 4刘书雷,刘云翔,张帆,唐桂芬,景宁.一种服务聚合中QoS全局最优服务动态选择算法[J].软件学报,2007,18(3):646-656. 被引量:146
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献931

同被引文献28

  • 1姜波,张晓筱,潘伟丰.基于二部图的服务推荐算法研究[J].华中科技大学学报(自然科学版),2013,41(S2):93-99. 被引量:6
  • 2吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 3郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 4MAYER-SCHNBERGER V, CUKIER K. Big data: a revolution that will transform how we live, work and think[M]. New York: Hodder Export, 2013:3-53.
  • 5CHEN Y J, CHU H C, CHEN Y M, et al. Adapting domain ontology for personalized knowledge search and recommendation[J]. Information and Management, 2013, 50(6):285-303.
  • 6OU J, LEE C, CHEN M. Efficient algorithms for incremental Web log mining with dynamic thresholds[J]. The VLDB Journal, 2008, 17(4): 827-845.
  • 7CHAN N, GAALOUL W, TATA S. A recommender system based on historical usage data for Web service discovery[J]. Service Oriented Computing and Applications, 2012, 6(1): 51-63.
  • 8SU J, YEH H, YU P, et al. Music recommendation using content and context information mining[J]. IEEE Intelligent Systems, 2010, 25(1):16-26.
  • 9PALMISANO C, TUZHILIN A, GORGOGLIONE M. Using context to improve predictive modeling of customers in personalization applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(11):1535-1549.
  • 10ZHENG Z, MA H, LYU M R, et al. QoS-aware Web service rec- ommendation by collaborative filtering [ J]. IEEE Transactions on Services Computing, 2011, 4(2) : 140 - 152.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部