期刊文献+

减压蜡油加氢裂化六集总动力学模型研究 被引量:4

STUDY ON SIX-LUMPED KINETIC MODEL FOR VACUUM GAS OIL HYDROCRACKING
下载PDF
导出
摘要 以实验室加氢裂化催化剂A的加氢裂化反应结果为基础,建立了减压蜡油加氢裂化六集总动力学模型。六集总的划分原则以实际加氢裂化产品切割方案为参照,按馏程把原料油和生成油划分为六个集总,即减压蜡油-加氢裂化尾油(〉360℃)、柴油馏分(290--360℃)、喷气燃料馏分(175~290℃)、重石脑油(65~175℃)、轻石脑油(〈65℃)和炼厂气(C4-)。在Matlab201lb数值计算软件上,利用非线性最小二乘法对动力学模型参数进行了优化回归。通过统计分析,忽略部分集总间的反应,模型预测所得加氢裂化产物收率与实验结果的最大偏差为1.80%,满足工业应用要求。 A six-lumped high pressure hydrocracking kinetic model based on VGO hydrocracking ex- periment data of catalyst A was established to predict product yields. Based on the actual hydrocracking product cutting scheme, the oils (feedstock and product oils) were divided into six lumps according to the fixed distillation range: vacuum gas oil and unconverted bottom oil (〉360 ℃), diesel fraction (290--360 ℃), kerosene fraction (175--290 ℃), heavy naphtha fraction (65--175 ℃), light naphtha fraction (〈65 ℃) and refinery gas (C4-). The parameters of the lumped kinetic model were regressed from the hydrocracking experiment data by nonlinear least squares algorithm in Matlab 2011b. Partial re- action pathways among six lumps were ignored after statistics analysis. The results showed that the cal- culation was in good agreement with the experimental product yields with the largest deviation of 1.8 afro which met the industrial demands.
出处 《石油炼制与化工》 CAS CSCD 北大核心 2014年第1期35-41,共7页 Petroleum Processing and Petrochemicals
基金 国家"十二五"科技支撑计划(2012BAE05B04) 中国石油化工股份有限公司合同项目(101102)
关键词 减压蜡油 加氢裂化 集总 动力学模型 vacuum gas oil (VGO) hydrocracking lump kinetic model
  • 相关文献

参考文献16

  • 1韩崇仁.加氢裂化工艺与工程[M]{H}北京:中国石化出版社,200122-27.
  • 2Ancheyta J,Sanchez S,Rodriguez M A. Kinetic modeling of hydrocracking of heavy oil fractions:A review[J].{H}Catalysis Today,2005,(1/2/3/4):76-92.
  • 3Qader S A,Hill G R. Hydrocracking of gas oil[J].{H}Industrial and Engineering Chemistry:Process Design and Development,1969,(01):98-105.
  • 4Callejas M A,Martinez M T. Hydrocracking of a Maya residue.Kinetics and product yield distributions[J].{H}Industrial and Engineering Chemistry Research,1999,(09):3285-3289.
  • 5Aboul-Gheit K. Hydrocracking of vacuum gas oil (VGO) for fuels production.Ⅱ:Reaction kinetics[J].Erdoel Erdgas Kohle,1989,(7/8):319-320.
  • 6Orochko D I,Perezhigina I Y,Rogov S P. Applied overall kinetics of hydrocracking of heavy petroleum distillates[J].{H}Chemistry and Technology of Fuels and Oils,1970,(06):561-565.
  • 7Yui S M,Sanford E C. Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils:Kinetics,product yields,and product properties[J].{H}Industrial and Engineering Chemistry Research,1989,(09):1278-1284.
  • 8Botchwey C,Dalai A K,Adjaye J. Kinetics of bitumen-derived gas oil upgrading using a commercial NiMo/Al2O3 catalyst[J].{H}Canadian Journal of Chemical Engineering,2004,(03):478-487.
  • 9Botchwey C,Dalai A K,Adjaye J. Product selectivity during hydrotreating and mild hydrocracking of bitumen-derived gas oil[J].{H}Energy and Fuels,2003,(05):1372-1381.
  • 10Aoyagi K,McCaffrey W C,Gray M R. Kinetics of hydrocracking and hydrotreating of coker and oilsands gas oils[J].{H}PETROLEUM SCIENCE AND TECHNOLOGY,2003,(5/6):997-1015.

同被引文献62

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部