期刊文献+

t-Rickart模的性质研究

Property Study of t-Rickart Modules
下载PDF
导出
摘要 给出t-Rickart模的概念,称模M R是t-Rickart模,如果S中的任意元素在M中的t-零化子是M的直和项,其中S是它的自同态环。给出t-Rickart模的一些刻画,并研究这类模的基本性质,证明了t-Rickart模的每个直和项仍是t-Rickart模。 The notion of t-Rickart modules is introduced. A module M is called a t-Rickart module, if the t-annihilator in M of any single element of S is generated by an idempotent of S, the S is its endomorphism ring. Some characterizations of t-Rickart modules are given and the basic properties of this kind of modules are studied. It is shown that every direct sum- mand of a t-Rickart module inherits the properties.
作者 霍志佳
出处 《四川理工学院学报(自然科学版)》 CAS 2013年第6期90-92,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 t—Rickart模 t-零化子 t—Baer模 Rickart模 t-Rickart modules t-annihilators t-Baer modules Rickart modules
  • 相关文献

参考文献1

二级参考文献14

  • 1BIRKENMEIER G F, KIM J Y, PARK J K. Principally quasi-Baer rings [J]. Comm. Algebra, 2001, 29(2): 639-660.
  • 2BIRKENMEIER G F, KIM J Y, PARK J K. A sheaf representation of quasi-Baer rings [J]. J. Pure Appl. Algebra, 2000, 146(3): 209-223.
  • 3BIRKENMEIER G F, KIM J Y, PARK J K. On Quasi-Baer Rings [M]. Amer. Math. Soc., Providence, RI, 2000.
  • 4BIRKENMEIER G F, KIM J Y, PARK J K. Quasi-Baer ring extensions and biregular rings [J]. Bull. Austral. Math. Soc., 2000, 61(1): 39-52.
  • 5CLARK W E. Twisted matrix units semigroup algebras [J]. Duke Math. J., 1967, 34: 417-423.
  • 6KAPLANSKY I. Rings of Operators [M]. New York-Amsterdam, 1968.
  • 7BERBERIAN S K. Baer^*-Rings [M]. Springer-Verlag, New York-Berlin, 1972.
  • 8CHATTERS A W, KHURI S M. Endomorphism rings of modules over nonsingular CS rings [J]. J. London Math. Soc. (2), 1980, 21(3): 434-444.
  • 9KHURJ S M. Nonsingular retractable modules and their endomorphism rings [J]. Bull. Austral. Math. Soc., 1991, 43(1): 63-71.
  • 10KIM J Y, PARK J K. When is a regular ring a semisimple Artinian ring [J]. Math. Japon., 1997, 46(2): 311-313.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部