Wave Period Distributions in Non-Gaussian Mixed Sea States
Wave Period Distributions in Non-Gaussian Mixed Sea States
摘要
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.
参考文献24
-
1Brodtkorb,P.A. The Probability of Occurrence of Dangerous Wave Situations at Sea[D].Norwegian University of Science and Technology,Trondheim,Norway,2004.
-
2Brodtkorb,P.A,Johannesson,P,Lindgren,G,Rychlik,I,Rydén,J,Sj?,E. WAFO A Matlab toolboxfor analysis of random waves and loads[A].Seattle,USA,2000.343-350.
-
3Butler,R.W,Machado,U.B,Rychlik,I. Distribution of wave crests in a non-Gaussian sea[J].{H}Applied Ocean Research,2009,(01):57-64.
-
4Chakrabarti,S.K. Hydrodynamics of Offshore Structures[M].Computational Mechanics Publications Inc,1987.
-
5Langley,R.S. A statistical analysis of non-linear random waves[J].{H}Ocean Engineering,1987,(05):389-407.
-
6Lindgren,G,Rychlik,I,Prevosto,M. The relation between wave length and wave period distributions in random Gaussian waves[J].Int J Offshore Polar Eng,1998,(04):258-264.
-
7Longuet-Higgins,M.S. The distribution of intervals between zeros of a stationary random function[J].Phil Trans Roy Soc Lond A,1962.557-599.
-
8Longuet-Higgins,M.S. On the joint distribution of the periods and amplitudes of sea waves[J].{H}Journal of Geophysical Research,1975,(18):2688-2694.
-
9Longuet-Higgins,M.S. On the joint distribution of wave periods and amplitudes in a random wave field[J].Proc Roy Soc Lond A,1983.241-258.
-
10Machado,U,Rychlik,I. Wave statistics in non-linear random sea[J].Extremes,2003,(02):125-146.
-
1于景茹,李保华,赵澄东.马尔可夫模型在遗传算法中的应用[J].山东工业技术,2016(7):277-277. 被引量:1
-
2Enge,PK 桂锦安.利用GPS对罗兰—C实现交叉率同步[J].导航,1989(3):75-82.
-
3潘章明,曲政.基于差分进化算法的高斯混合模型参数估计[J].现代计算机,2009,15(5):29-31. 被引量:2
-
4张益,刘勇.水波色散方程的直接求解方法[J].水道港口,2015,36(1):8-11. 被引量:1
-
5陈曦,林涛,唐贤瑛.遗传算法的参数设计与性能研究[J].计算机工程与设计,2004,25(8):1309-1310. 被引量:18
-
6肖维.用于高斯混合模型参数估计的EM算法及其初始化研究[J].电子测试,2011,22(6):26-30. 被引量:4
-
7谭昱.调频广播有效避免民航信号干扰的方法[J].电子技术与软件工程,2016(21):42-42.
-
8汪民乐,高晓光,汪德武.遗传算法控制参数优化策略研究[J].计算机工程,2003,29(5):51-52. 被引量:9
-
9张尚然,汤亚芳,林俐.基于改进遗传算法的无功优化方法的研究[J].中小企业管理与科技,2015(19):162-163. 被引量:1
-
10郑大伟,玄光男.模糊遗传算法在机器调动问题运用[J].北京科技大学学报,2002,24(1):85-87. 被引量:3