期刊文献+

信用风险预警的MA-RSFNN模型构建与应用

A Fuzzy Neural Network based on Memetic Algorithms and Rough Set Theory for Credit Risk Early Warning and Its Application
下载PDF
导出
摘要 为了克服模糊神经网络的维数灾难、结构复杂、局部早熟及收敛慢等缺陷,在设计一种模糊神经网络的基础上,将模因算法和粗糙集理论引入模糊神经网络,提出一种模因进化型粗糙模糊神经网络(MA-RSFNN)。新模型借助模因算法的全局搜索能力减少网络陷入局部极值的可能性,同时利用粗糙集知识约简对网络输入数据进行降维消冗,精简输入维度,避免"维数灾难"。实例仿真结果表明MA-RSFNN模型的预测准确性较高,是一类解决金融风险管理中高维复杂问题的有效方法。 In order to overcome the drawbacks of fuzzy neural network such as curse of dimensionality, complex structure, local optimization, slow convergence and so on, a memetic optimized rough fuzzy neural network is proposed by integrating the Memetic Algorithms(MA) and Rough Set(RS) into Fuzzy Neural Network(FNN) after that a new FNN has been de- signed. The new model can reduce the possibility of network into local extremes by taking advantage of the MA' s global search ability, and can avoid the curse of dimensionality by using the knowledge reduction of rough set to reduce dimension- ality and eliminate redundancy of the input data set. The application result indicates that the MA - RSFNN could obtain much higher accuracy of prediction. It is an. efficient" method to solve high dimensional complex problems of financial risk management.
作者 黄福员
出处 《智能计算机与应用》 2013年第6期10-13,17,共5页 Intelligent Computer and Applications
基金 广东省自然科学基金(10452404801006352) 广东高校优秀青年创新人才培育项目(WYM10103)
关键词 信用风险预警 模糊神经网络 模因算法 粗糙集 Credit Risk Early Warning Fuzzy Neural Network Mernetic Algorithms Rough Set
  • 相关文献

参考文献19

  • 1MIN J H,LEE Y C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[J].{H}Expert systems with application,2005.603-614.
  • 2BAHRAMMIRZAEE A. A comparative survey of artificial intelligence applications in finance:artificial neural networks,expert system and hybrid intelligent systems[J].Neural Comput & Applic,2010.1165-1195.
  • 3HAMDANI T M,ALIMI A M,FAKHRI K. Enhancing the structure and parameters of the centers for BBF fuzzy neural network classifier construction based on data structure[A].Piscataway NJ:IEEE,2008.3174-3180.
  • 4MOSCATO P. On evolution,search,optimization,genetic algorithms and martial arts:towards memetic algorithms[A].Pasadena,California,USA,1989.1-67.
  • 5NORA S,CHRISTIAN S,ANDREAS Z. A memetic clustering algorithm for the functional partition of genes based on the gene ontology[A].San Diego,USA,2004.252-259.
  • 6DAWKINS R. The selfish gene[M].UK:Oxford University Press,1976.
  • 7MOSCATO P,NORMAN M G. A memetic approach for the traveling salesman problem-implementation of a computational ecology for com-binatorial optimization on message-passing systems[A].Amsterdam:IOS Press,1992.177-186.
  • 8RADCLIFFE N J,SURRY P D. Formal memetic algorithms[J].Evolutionary Computing,1994.1-16.
  • 9XU Xin,HE H G. A theoretical model and convergence analysis of memetic evolutionary algorithms[A].Changsha,2005.1035-1043.
  • 10KENNEDY J,EBERHART R C. Particle swarm optimization[A].Piscataway NJ:IEEE,1995.1942-1948.

二级参考文献20

  • 1Jackson P,Perraudin W.Regulatory implications of credit risk modeling[J].Joumal of Banking and Finance,2000,24:1-14.
  • 2Rast M.Forecasting financial time series with fuzzy neural network[J].IEEE, 1997,1( 10):28-31.
  • 3Eklund T,Larsen K,Berhardsen E.Model for analysis credit risk in the enterprise sector[J].Norges Bank,2001,72(3):99-106.
  • 4Eberhart R C,Shi Y H.Partiele swarm optimization:Developments, applications and resources[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway, USA:IEEE Service Center, 2001 : 81-86.
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE,International Conference on Neural Networks.Piscataway NJ:IEEE, 1995: 1942-1948.
  • 6Kennedy J.The particle swarm:Social adaptation of knowledge[C]// Preceedings of Evolutionary Computation.Indianapolis : IEEE, 1997 : 303-308.
  • 7Kennedy J,Eberhart R C,Shi Y.Swarm intelligence[M].San Francisco : Morgan Kaufmm Publishers,2001.
  • 8Shi Y H,Eberhart R C.A modified particle swarm optimizer[C]// Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE Service Center, 1998 : 69-73.
  • 9Shi Y H,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway, USA: IEEE Service Center,2001 : 101-106.
  • 10Takagi T,Sugeno M.Fuzzy identification of system and its application to modeling and control[J].IEEE Transaction on Systems, Man, and Cybernetics, 1985,15 ( 1 ) : 116-132.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部