期刊文献+

关于出租车载客地点序列推荐技术的研究 被引量:3

Towards Sequential Recommendation of Passenger-finding Locations in An Urban Taxi Service
下载PDF
导出
摘要 在大城市中,出租车已成为实现智能交通运输系统不可或缺的一环。然而,由于一些出租车司机的驾驶经验,和对城市活动的熟悉程度的不足,使得其在寻找乘客时会采取毫无目的的随机漫游策略。这就导致了出租车司机的收益不高,同时也造成了能源的消耗以及环境的污染。针对此问题,将提出出租车载客地点的推荐模型,使得模型给出的推荐地点序列能获得较高的期望收益。具体来说,将基于出租车GPS轨迹数据建立出租车载客地点的马尔科夫决策过程模型,并给出求解该模型的2种算法。仿真实验结果显示,与典型的TopK方法相比,给出的推荐结果能更好地提高单位时间内出租车司机的收益。 In modem cities, taxis play a quite significant role in intelligent transportation system. However, due to lacking of enough driving experience and knowledge of cities, some taxi drivers tend to take stochastic cruise for finding passengers when they are in vacant. This leads to the low profit as well as the energy consumption and environment pollution. This pa- per presents a recommender model for taxi driver to recommend a series of locations in which taxi driver can get high expec- ted profit for passenger finding. Specifically, the paper establishes a Markov Decision Process model which is based on taxi- cab's GPS trajectory data, and two algorithms for solving this model will be given. Simulation results show that this model could gain better recommendation performance than TopK method, with the metric of profit per unit time.
出处 《智能计算机与应用》 2013年第6期70-73,共4页 Intelligent Computer and Applications
关键词 智能交通系统 马尔科夫决策过程 空间数据挖掘 轨迹数据处理 Intelligent Transportation System(ITS) Markov Decision Process (MDP) Spatial Data Mining TrajectoryData Processing
  • 相关文献

参考文献7

  • 1New York City Taxi and Limousine Commission. Taxi of Tomorrow Survey Results[OL].http://www.nyc.gov/html/tlc/downloads/pdf/tot_survey_results 02 10 11.pdf,2011.
  • 2YUAN J,ZHENG Y,XIE X. Driving with knowledge from the physical world[A].ACM,2011.316-324.
  • 3GE Y,XIONG H,TUZHILIN A. An energy-efficient mobile recommender system[A].ACM,2010.899-908.
  • 4LI B,ZHANG D,SUN L. Hunting or waiting? Discovering passenger-fmding strategies from a large-scale real-world taxi dataset[A].{H}IEEE,2011.63-68.
  • 5POWELL J W,HUANG Y,BASTANI F. Towards reducing taxicab cruising time using spatio-temporal profitability maps[A].Springer Berlin Heidelberg,2011.242-260.
  • 6PUTERMAN M L. Markov decision processes:discrete stochastic dynamic programming[M].{H}New York:Wiley,2009.
  • 7SUTTON R S,BARTO A G. Reinforcement learning:An introduction[M].{H}Cambridge:The MIT Press,1998.

同被引文献19

  • 1LEE J.Traveling pattern analysis for the design of location-dependent contents based on the taxi telematics system[EB/OL].[2014-12-06].http://www.dbpia.co.kr/Journal/ArticleDetail/1457653.
  • 2CAI X,BAIN M,KRZYWICKI A,et al.Collaborative filtering for people to people recommendation in social networks[C]//Proceedings of the 23rd Australasian Joint Conference on AI 2010:Advances in Artificial Intelligence,LNCS 6464.Berlin:Springer,2011:476-485.
  • 3PANNIELLO U,TUZHILIN A,GORGOGLINE M.Comparing context-aware recommender systems in terms of accuracy and diversity[J].User Modeling and User-Adapted Interaction,2014,24(1/2):35-65.
  • 4GE Y,XIONG H,TUZHILIN A,et al.An energy-efficient mobile recommender system[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2010:899-908.
  • 5GE Y,LIU C,XIONG H,et al.A taxi business intelligence system[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and DataMining.New York:ACM,2011:735-738.
  • 6POWELL J W,HUANG Y,BASTANI F,et al.Towards reducing taxicab cruising time using spatio-temporal profitability maps[C]//Proceedings of the 12th International Symposium on Advances in Spatial and Temporal Databases,LNCS 6849.Berlin:Springer,2011:242-260.
  • 7LI B,ZHANG D,SUN L,et al.Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset[C]//Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops.Piscataway:IEEE,2011:63-68.
  • 8DING Y,LIU S,PU J,et al.HUNTS:A trajectory recommendation system for effective and efficient hunting of taxi passengers[C]//MDM 2013:Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Management.Piscataway:IEEE,2013,1:107-116.
  • 9YUAN J,ZHENG Y,XIE X,et al.T-Drive:Enhancing driving directions with taxi drivers' intelligence[J].IEEE Transactions on,Knowledge and Data Engineering,2013,25(1):220-232.
  • 10ADOMAVICIUS G,TUZHILIN A.Context-aware recommender systems[M]//Recommender Systems Handbook.Berlin:Springer,2011:217-253.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部