期刊文献+

反应堆pin-by-pin精细建模工具开发 被引量:4

Development of Modeling Tools for pin-by-pin Precise Reactor Simulation
下载PDF
导出
摘要 为开展大规模(如反应堆全堆芯pin-by-pin)输运模拟计算,北京应用物理与计算数学研究所研制了中子-光子耦合输运程序JMCT和支撑框架程序JCOGIN,如何快速、方便地建立物理模型是缩短问题模拟周期的关键。目前在粒子输运领域,国内外均开展了基于CAD系统的可视建模工具的开发工作。本文介绍了基于领域的可视建模工具的开发思路,结合领域知识,开发了方便、快捷的组件;为解决大规模几何建模的存储和转换问题,实现了层次化几何树的数据结构和转换算法;并实现了自动将模型输出为JMCT计算输入文件。使用该工具建立了大亚湾全堆芯模型,并进行了计算,验证了可视建模工具输出模型的正确性。 In order to develop large-scale transport simulation and calculation method (such as simulation of whole reactor core pin-by-pin problem), the Institute of Applied Physics and Computational Mathematics developed the neutron-photon coupled transport code JMCT and the toolkit JCOGIN. Creating physical calculation model easily and efficiently can essentially reduce problem solving time. Currently, lots of visual modeling programs have been developed based on different CAD systems. In this article, the developing idea of a visual modeling tool based on field oriented development was introduced. Considering the feature of physical modeling, fast and convenient operation modules were developed. In order to solve the storage and conversion problems of large scale models, the data structure and conversional algorithm based on the hierarchical geometry tree were designed. The automatic conversion and generation of physical model input file for JMCT were realized. By using this modeling tool, the Dayawan reactor whole core physical model was created, and the transformed file was delivered to JMCT for transport calculation. The results validate the correctness of the visual modeling tool.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第B12期443-447,共5页 Atomic Energy Science and Technology
基金 863计划资助项目(2012AA01A303) 中国工程物理研究院科学技术发展基金资助项目(2008B0202018 2008B0103005) 国防科工局核能开发资助项目
关键词 领域建模 pin—by-pin模拟 层次化几何树 field oriented modeling pin-by-pin simulation hierarchical geometry tree
  • 相关文献

同被引文献31

  • 1Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2) : 405 440.
  • 2Atzeni S, Meyer-Ter-Vehn J. The physics of inertial fusionEM~. New York: Oxford University Press, 2004.
  • 3Park H S, Hurricane O A, Callahan D A, et al. High-adiabat high foot inertial confinement fusion implosion experiments on the National Ignition Faeility[J]. Phys Rev Lett, 2014, 112: 055001.
  • 4Ma T, Hurricane O A, Callahan D A, et al. Thin shell, high velocity inertial confinement fusion implosions on the National Ignition Facility [J]. PhysRevLett, 2015, 114: 145004.
  • 5Briesmeister J F. MCNP a general Monte Carlo N-particle transport code~R3. LA-12625 M, 1997.
  • 6Eder D C, Song P M, Latkowski J F, et al. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems [J]. J Phys IV France, 2006, 133:907 912.
  • 7Khater H, Brereton S, Singh M. Shielding analysis for X-ray sources generated in target chamber of the National Ignition Facility[J]. Nucl Technol, 2008, 168(2): 381-386.
  • 8Khater H, Dauffy L, Sitaraman S, et al. Evaluation of prompt dose environment in the National Ignition Facility during D-D and THD shots [J]. Fusion Sci Technol , 2009, 56(2) : 697-701.
  • 9Khater H, Brereton S. Monte Carlo simulation of the prompt dose environment in the National Ignition Facility during low yield D-T shots [J]. Progress in Nuclear Science and Technology, 2011, 2: 389-394.
  • 10Song P, Moran M, Phillips T, et al. Study of scattered background neutron in NIF and time-of-flight (TOF) to measure neutronEJ3. J Phys IVFrance, 2006, 133: 929-933.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部