期刊文献+

通用型Monte Carlo粒子输运模拟软件JMCT的计数功能设计 被引量:3

Design of Tallying Function for General Purpose Monte Carlo Particle Transport Code JMCT
下载PDF
导出
摘要 本文提出了一种新的延时累加算法。基于底层的JCOGIN(J combinatorial geometry Monte Carlo transport infrastructure)框架和新的延时累加算法,通用型Monte Carlo中子-光子输运模拟软件JMCT的计数能力得到了较大提高。对所考察的非重复结构的单层几何模型问题,JMCT的计数效率较MCNP 4C程序所采用的list scoring技巧高约28%;对于较复杂的重复结构几何模型问题,JMCT的大规模精细计数效率比MCNP 4C高约两个量级。JMCT目前的计数能力为反应堆物理分析及多燃耗步计算奠定了良好的基础。 A new postponed accumulation algorithm was proposed. Based on JCOGIN (J combinatorial geometry Monte Carlo transport infrastructure) framework and the postponed accumulation algorithm, the tallying function of the general purpose Monte Carlo neutron-photon transport code JMCT was improved markedly. JMCT gets a higher tallying efficiency than MCNP 4C hy 28 ~ for simple geometry model, and JMCT is faster than MCNP 4C by two orders of magnitude for complicated repeated structure model. The available ability of tallying function for JMCT makes firm foundation for reactor analysis and multi-step burnup calculation.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第B12期640-644,共5页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(91118001) 国家高技术研究发展计划资助项目(2012AA01A303) 国家重点基础研究专项经费资助项目(2011CB309705) 中国工程物理研究院科学技术发展基金资助项目(2011A0103006)
关键词 JMCT JCOGIN 延时累加算法 MONTE CARLO方法 计数 JMCT JCOGIN postponed accumulation algorithm Monte Carlo method tallying
  • 相关文献

参考文献8

  • 1PROCASSINI R J, BECK B R. Parallel Monte Carlo particle transport and the quality of random number generators how good is good enough[C] //Proceedings of the Monte Carlo Method: Ver- satility Unbounded in A Dynamic Computing World. Tennessee, USA: [s. n. ], 2005.
  • 2邓力,李刚.粒子输运蒙特卡罗模拟现状概述[J].计算物理,2010,27(6):791-798. 被引量:33
  • 3BROWN F, KIEDROWSKI B, BROWN D. Ad- vanced Monte Carlo for reactor physics core anal- ysis[C]//PHYSOR 2012. Tennessee, USA: [s. n. ], 2012.
  • 4BILL M. Advances in Monte Carlo methods for global reactor analysis[C]//International Topical Meeting on Mathematics & Computation and Su- percomputing in Nuclear Applications (M&C + SNA). California: [s. n. ], 2007.
  • 5BROWN F, MARTIN W, LEPPANEN J, et al. Reactor physics analysis with Monte Carlo[C]// PHYSOR 2010. Pennsylvania, USA: [s. n.], 2010.
  • 6张宝印,李刚,邓力.组合几何蒙特卡罗粒子输运支撑软件框架JCOGIN介绍[J].强激光与粒子束,2013,25(1):173-176. 被引量:11
  • 7孙嘉龙,余纲林,向宏志,等.RMC复杂几何及相关功能研究[C]∥第十四届反应堆数值计算和粒子输运学术会议暨2012反应堆物理会议论文集.银川-[出版者不详],2012.
  • 8KIGER W S, HOCHBERG A G, ALBRITTON J R, et al. Performance enhancements of MCNP 4B, MCNP5, and MCNPX for Monte Carlo ra- diotherapy planning calculations in lattice geometries[C]///11th International Symposia on Neutron Capture Therapy. Boston, USA: [s. n. ], 2005.

二级参考文献48

共引文献37

同被引文献2

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部