期刊文献+

行星齿轮传动系的周期运动及其稳定性 被引量:18

Coexisting periodic solutions and their stability of a nonlinear planetary gear train
下载PDF
导出
摘要 研究了间隙行星齿轮非线性传动系的周期轨道及其稳定性。针对PNF方法在求解非线性动力系统时存在的两点缺陷,即研究对象必须光滑和迭代初始点要求距离周期轨道足够近,提出了改进措施使之能够适应间隙行星齿轮传动系统的周期轨道的求解以及判稳工作。改进后的PNF方法对算例的计算结果和直接数值积分结果的吻合证明了改进措施的有效性。采用改进后的PNF方法研究了行星齿轮系统在一组给定参数下共存的周期运动,并判断了各共存周期运动的稳定性;通过延续判断不同转速下系统周期轨道的稳定性,研究了行星齿轮传动系统的周期运动状态随无量纲转速的分岔特性。结果发现,行星齿轮非线性传动系统在某些参数组合下可以共存几个稳定或者是不稳定的周期轨道;转速的变化可以使行星齿轮系统通过倍周期分岔的形式最终通往混沌。 Coexisting Periodic solutions and their stability of a nonlinear torsional vibration model for a planetary gear train with gear backlashes are studied by using the method of PNF. Some adaptations are made for the PNF method so as to make it suit- able for the non-smooth and nonlinear planetary gear train. The coexisting periodic solutions of the system under certain dimen- sionless rotational speed are studied by using the method of modified PNF,with the stability of each periodic solution investiga ted at the same time. The bifurcation characteristics of the periodic trajectories are studied as well by using PNF at different speeds. The results show that a nonlinear planetary gear train with certain parameters may have several coexisting stable or un- stable periodic traiectories Moreover, the motion of the system could also evolve into chaos by way of period doubling bifurca tion as the speed increases.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第6期815-822,共8页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50775108) 安徽省高校优秀青年人才基金资助项目(2012SQL139) 安徽科技学院自然科学一般项目资助(ZRC2013382)
关键词 行星齿轮系 非线性振动 共存周期轨道 稳定性 PNF planetary gear set nonlinear vibration coexisting periodic solutions stability PNF
  • 相关文献

参考文献14

  • 1李同杰,朱如鹏,鲍和云,项昌乐,刘辉.行星齿轮系扭转非线性振动建模与运动分岔特性研究[J].机械工程学报,2011,47(21):76-83. 被引量:59
  • 2Chu Fulei,Zhang Zhengsong. Bifurcation and chaos in a rub-impact Jeffcott rotor system[J].{H}Journal of Sound and Vibration,1998,(01):1-18.doi:10.1006/jsvi.1997.1283.
  • 3Li Dexin,Xu Jianxue. A new method to determine the periodic orbit of a nonlinear dynamic system and its period[J].{H}Engineering with Computers,2005.316-322.
  • 4Lau S L,Zhang W S. Nonlinear vibrations of piecewise linear systems by incremental harmonic balance method[J].Journal of Applied Mechanics Transactions of the American Society of Mechanical Engineers,1992.153-160.
  • 5Liu Tieniu,Wang Wei. Stationary points iteration method for periodic solution to nonlinear system[J].{H}Applied Mathematics and Mechanics,1987,(03):263-270.
  • 6Kahraman A,Singh R. Nonlinear dynamics of a spur gear pair[J].{H}Journal of Sound and Vibration,1990,(01):49-75.
  • 7韩清凯;于涛;王德友.故障转子系统的非线性振动分析与诊断方法[M]{H}北京:科学出版社,2010.
  • 8Han Qingkai. Periodic motion stability of a dual-disk rotor system with rub-impact at fixed limiter[J].Vibro-Impact Dynamics of Ocean System LANCM,2009.105-109.
  • 9Han Qingkai. Periodic motions of a dual-disk rotor system with rub-impact at fixed limiter[J].Proc JMSE Part C:Journal of Mechanical Engineering Science,2008,(C10):1935-1946.
  • 10Luo Yuegang,Ren Zhaohui,Ma Hui. Stability of periodic motion on the rotor-bearing system with coupling faults of crack and rub-impact[J].{H}JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY,2007.860-864.

二级参考文献7

共引文献58

同被引文献120

引证文献18

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部