期刊文献+

一类病毒动力学模型的全局稳定性分析 被引量:1

Global Stability Analysis for a Viral Dynamic Model
下载PDF
导出
摘要 在病毒能影响未感染细胞产生的假设下,研究了一类被感染细胞具有潜伏和活性两阶段的动力学模型,给出病毒存在与否的阈值,并讨论了平衡点的存在性.通过微分方程稳定性理论得到病毒灭绝平衡点的全局渐近稳定性,利用自治收敛定理证明了病毒存在平衡点的全局渐近稳定性. Under the assumption that virus can affect the input of uninfected cells,a viral dynamic model with latently and actively infected cells is investigated.The threshold identified which determines the outcome of virus is given and the existence of the equilibrium is discussed.Using the stable theory and autonomous convergent theory,the global asymptotical stability of the virus extinction equilibrium and the virus existence equilibrium are proved in the paper.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2013年第6期642-645,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 陕西省科技厅基金项目(2011JQ1015) 陕西省教育厅基金项目(12JK0856) 渭南师范学院基金项目(13YKF004)
关键词 病毒动力学 平衡态 稳定性 持续性 viral dynamics equilibrium-state stability persistence
  • 相关文献

参考文献8

  • 1Ma Z E,Li J. Dynamical modeling and analysis of epidemics[M].Singapore:World Scientific publishing Company,2009.
  • 2Nowak M A,May R M. Virus Dynamics[M].{H}New York:Oxford University Press,2000.
  • 3王霞,陶有德,宋新宇.一类带有肝炎B病毒感染的数学模型的全局稳定性分析(英文)[J].生物数学学报,2009,24(1):1-8. 被引量:14
  • 4查淑玲,李建全,杨亚莉.一类具有阶段结构的病毒动力学模型[J].生物数学学报,2011,26(2):286-292. 被引量:2
  • 5Li M Y,Muldowney J S. Global stability for the SEIR model in epidemiology[J].{H}Mathematical Biosciences,1995.155-164.
  • 6Zhou X Y,Cui J G. Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate[J].Nonlinear Dyn,2011.639-653.
  • 7Thieme H R. Convergence results and a Poincaré Bendixson trichotomy for asymptotically autonomous differential equations[J].{H}Math Biology,1992.755-763.
  • 8Hutson V,Schmitt K. Permanence and the dynamics of biological systems[J].{H}Mathematical Biosciences,1992.1-71.

二级参考文献11

  • 1夏米西努尔.阿布都热合曼,滕志东.一类非自治SIRS传染病模型的持久性与灭绝性研究(英文)[J].生物数学学报,2006,21(2):167-176. 被引量:6
  • 2Ma zhien, Li Jia. Dynamical modelling and analysis of epidemics[M]. World Scientific Publishing Company, Singapore. 2009.
  • 3Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford University Press, New York, 1991.
  • 4Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology[M]. New York: Springer-Verlag, 2001.
  • 5Nowak M A, May R M. Virus Dynamics[M]. New York: Oxford University Press, 2000.
  • 6McLean A R, Emery V C, Webster A, et al. Population dynamics of HIV within an individual after treatment with Zidovudine[J]. AIDS, 1991, 5(3):485-489.
  • 7O'Keefe K J. The evolution of virulence in pathogens with frequency-dependent transmission[J]. Journal of Theoretical Biology, 2005, 233(1):55-64.
  • 8Reluga T C, Dahari H, Perelson A S. Aanlysis of hepatitis C virus infection models with hepatocyte homeostasis [J]. SIAM Journal on Applied Mathematics, 2009, 69(3):999-1005.
  • 9杨茂,王开发.一类非线性感染率病毒动力学模型分析[J].四川师范大学学报(自然科学版),2009,32(3):304-306. 被引量:18
  • 10王霞,陶有德,宋新宇.一类带有肝炎B病毒感染的数学模型的全局稳定性分析(英文)[J].生物数学学报,2009,24(1):1-8. 被引量:14

共引文献13

同被引文献7

  • 1R. Xu. Global stability of an HIV-1 infection mode lwith saturation infection and intracellular delay[ J ] .Journal of Mathematical Analysis and Applications, 2011,375 : 75- 81.
  • 2X. Wang, X.Y. Song. Global stability and periodic solution of a model for HIV infection of CD4+-T cells[ J] .Applied Mathe- matics and Computation,2007,189 : 1331-1340.
  • 3L.C. Wang, M.Y. Li. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+- T cells[ J] .Mathe- matical Biosciences, 2006,200: 44-57.
  • 4X.D. Liu, H. Wang, Z.X. Hu,et al. Global stability of an HIV pathogenesis model with cure rate[J]. Nonlinear Analysis, 2011, (12) : 2947-2961.
  • 5L.J. Hei, Y. Yu. Non-constant positive steady state of one resource and two consumers model with diffusion[ J]. J. Math. A- nal,2008,339:566-581.
  • 6侯博阳,马万彪.一类具有Beddington-DeAngelis型功能反应函数的HIV病毒动力学系统模型的稳定性[J].数学的实践与认识,2009,39(12):71-79. 被引量:13
  • 7许丹丹,李艳玲,吴迪.一类带扩散项的HIV模型的平衡解的稳定性分析[J].纯粹数学与应用数学,2011,27(3):369-376. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部