摘要
考虑缠绕方程组N(O+iR)=Ki(i=0,1,2,3),其中O是有理缠绕或者是2个有理缠绕的和,R是有理缠绕,并且O和R都是未知的缠绕,iR表示i个R的缠绕和,N是缠绕的分子的构造,Ki是已知的纽结或链环.解出上述模型中的未知缠绕O和R.通过将有理缠绕与有理纽结或链环(二桥结)联系起来,对于方程组N(O+iR)=Ki(i=0,1,2,3),从Ki(0≤i≤3)的交叉点数入手,得到了方程组的一般解法.
In this paper ,we give the methods of solving the tangle equations N(O+ iR)= Ki(i=0 ,1 , 2 ,3) ,where O is a rational tangle or the summand of two rational tangles ,and R is a rational tangle . In addition ,O and R are unknown tangles ,iR denotes the tangle sum of i copies of R ,N is the nu-merator construction of the tangle ,and Ki are the known knots or links .Then our task is working out the unknow n tangles O and R in the above mathematical model .In order to simplify the calcula-tion ,we give the vector representation of tangles by the constructions of the tangles and get the gen-eral solution of the equations N(O+ iR)= Ki(i=0 ,1 ,2 ,3) by using the crossing numbers of Ki(0≤i≤3) .
出处
《辽宁师范大学学报(自然科学版)》
CAS
2013年第4期443-448,共6页
Journal of Liaoning Normal University:Natural Science Edition
基金
国家自然科学基金项目(11071106)
辽宁省高等学校优秀人才支持计划项目(LR2011031)