期刊文献+

压缩态变分法研究抛物量子点中强耦合极化子的性质

The Properties of the Polaron in the Electron-phonon Strong-coupling Regime in a Parabolic Quantum Dot by Squeezed-state Variational Approach
下载PDF
导出
摘要 研究了抛物量子点中强耦合极化子的性质。采用基于逐次正则变换的变分方法,利用单模压缩态变换处理包含声子产生湮灭算符的双线性项,得到了仅在考虑电子与体纵光学声子相互作用情况下,在电子-声子强耦合极限下抛物量子点中极化子的基态能量及电子周围光学声子平均数的数学表达式,并分别讨论了有效受限长度、电子-体纵光学声子耦合常数与基态能量和声子平均数之间的变化关系。 In the paper, the properties of the strong-coupling polaron in a parabolic quantum dot is studied. The variational approach applied is based on two successive canonical transforma- tions and a single-mode squeezed-state type unitary transformation is used to deal with the biline-ar terms involving phonon producing-vanishing operator. Obtained are the ground-state energy of polaron and the average number of virtual phonons around the electron in the electron-phonon strong-coupling regime in a parabolic quantum dot. Finally, their relationships with the effective confinement length and the coupling constant are discussed.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2013年第6期518-521,共4页 Research & Progress of SSE
基金 内蒙古民族大学科研基金资助项目(NMD1219)
关键词 压缩态 量子点 极化子 squeezed-state quantum dot polaron
  • 相关文献

参考文献9

  • 1Reed M A,Bate R T,Bradshaw K. Spatial quantization in GaAs-AlGaAs multiple quantum dots[J].{H}Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures,1986,(01):358-360.
  • 2Kandemir B S. Polaronic effects on the energy spectrum of two anyons in a parabolic quantum dot[J].{H}Physical Review B:Condensed Matter,2006,(11):115301-111-10.
  • 3Vasilevskiy M I,Anda E V,Makler S S. Electronphonon interaction effects in semiconductor quantum dots:A nonperturabative approach[J].{H}Physical Review B:Condensed Matter,2004,(03):035318-031-14.
  • 4Hirose K,Wirgreen N S. Spin-density-functional theory of circular and elliptical quantum dots[J].{H}Physical Review B:Condensed Matter,1999,(06):4604-4611.
  • 5Zhou Haiyang,Gu Shiwei,Shi Yaoming. Effects of strong coupling magnetopolaron in quantum dot[J].Modern Phys Lett B,1998,(02):693-696.
  • 6Melnikov D V,Fowler W B. Bound polaron in a spherical quantum dot:The all-coupling variational approach[J].{H}Physical Review B:Condensed Matter,2001,(19):195335-191-12.
  • 7肖景林,王立国.量子点中强耦合极化子的性质[J].光电子.激光,2003,14(8):886-888. 被引量:18
  • 8王立国,肖景林.抛物量子点中弱耦合磁极化子的性质[J].发光学报,2003,24(6):562-566. 被引量:13
  • 9Kandemir B S,Cetin A. Impurity magnetopolaron in a parabolic quantum dot:the squeezed-state variational approach[J].{H}Physics:Condens Matter,2005,(04):667-677.

二级参考文献15

  • 1J S Pan,H B Pan. Size-quantum effect of the energy of a change carrier in a semiconductor crystallite[J]. Phys.Solidi. B148: 129.
  • 2J C Marini, B Strebe, E Kartheuser. Exiton-Phonon interaction in CdSe and CuCl polar semiconductor nanosphere[J]. Phys. Rev. , B. B50: 14302.
  • 3K Oshiro,K Akai,Matsuura. Polaron in a spherical quantum dot embedded in nonpolar matrix[J]. Phys. Rev.,B58 : 7986.
  • 4S N Klimin,E P Pokalilov,V M Fomin. Bulk and interface polarons in quantum wires and dots[J]. Phys. Status solidi, B184: 373.
  • 5M H Degani, H A Farias. Polaron effects in one-dimensional lateral quantum wires and parabolic quantum dots[J].Phys. Rev. , 1990 ,B42:11950.
  • 6L Wendler,A V Chaplic,R Haupt. Cyclotron resonance of magnetopolarons in anisotropic parabolic quantum dots[J]. J . Phys. Condens . Matter, 1993 ,5: 8031.
  • 7S Mukhopadhyay,A Chatterjee. Energy levels of the Froehlich polaron in a spherical quantum dot[J]. Phys. Lett.,1995,A204:411.
  • 8Y Lepine,G Bruneau. The effect of an anisotropic polaron in a parabolic quantum dot[J]. J. Phys: Condens. Matter,1998,10:1495.
  • 9S Mukhopadhyay, A Chatterjee. Relaxed and effective-mass excited states of a quantum-dot polaron[J]. Phys.Rev., 1998, B58: 2088.
  • 10B S Kandemir,T Atanhan. Polaron effects on an anisotropic quantum dot in a magnetic field[J]. Phys. Rev.,1999,B60:4834.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部