期刊文献+

Cloning and functional analysis of a novel ascorbate peroxidase(APX) gene from Anthurium andraeanum 被引量:1

Cloning and functional analysis of a novel ascorbate peroxidase(APX) gene from Anthurium andraeanum
原文传递
导出
摘要 An 888-bp ful-length ascorbate peroxidase (APX) complementary DNA (cDNA) gene was cloned from Anthurium andraeanum, and designated as AnAPX. It contains a 110-bp 5′-noncoding region, a 28-bp 3′-noncoding region, and a 750-bp open reading frame (ORF). This protein is hydrophilic with an aliphatic index of 81.64 and its structure consisting ofα-helixes,β-turns, and random coils. The AnAPX protein showed 93%, 87%, 87%, 87%, and 86% similarities to the APX homologs from Zantedeschia aethiopica, Vitis pseudoreticulata, Gossypium hirsutum, Elaeis guineensis, and Zea mays, respectively. AnAPX gene transcript was measured non-significantly in roots, stems, leaves, spathes, and spadices by real-time polymerase chain reaction (RT-PCR) analysis. Interestingly, this gene expression was remarkably up-regulated in response to a cold stress under 6 °C, implying that AnAPX might play an important role in A. andraeanum tolerance to cold stress. To confirm this function we overexpressed AnAPX in tobacco plants by transformation with an AnAPX expression construct driven by CaMV 35S promoter. The transformed tobacco seedlings under 4 °C showed less electrolyte leakage (EL) and malondialdehyde (MDA) content than the control. The content of MDA was correlated with chilling tolerance in these transgenic plants. These results show that AnAPX can prevent the chilling challenged plant from cellmembrane damage and ultimately enhance the plant cold tolerance. An 888-bp full-length ascorbate peroxidase(APX) complementary DNA(cDNA) gene was cloned from Anthurium andraeanum, and designated as AnAPX. It contains a 110-bp 5′-noncoding region, a 28-bp 3′-noncoding region, and a 750-bp open reading frame(ORF). This protein is hydrophilic with an aliphatic index of 81.64 and its structure consisting of α-helixes, β-turns, and random coils. The AnAPX protein showed 93%, 87%, 87%, 87%, and 86% similarities to the APX homologs from Zantedeschia aethiopica, Vitis pseudoreticulata, Gossypium hirsutum, Elaeis guineensis, and Zea mays, respectively. AnAPX gene transcript was measured non-significantly in roots, stems, leaves, spathes, and spadices by real-time polymerase chain reaction(RT-PCR) analysis. Interestingly, this gene expression was remarkably up-regulated in response to a cold stress under 6 °C, implying that AnAPX might play an important role in A. andraeanum tolerance to cold stress. To confirm this function we overexpressed AnAPX in tobacco plants by transformation with an AnAPX expression construct driven by CaMV 35S promoter. The transformed tobacco seedlings under 4 °C showed less electrolyte leakage(EL) and malondialdehyde(MDA) content than the control. The content of MDA was correlated with chilling tolerance in these transgenic plants. These results show that AnAPX can prevent the chilling challenged plant from cell membrane damage and ultimately enhance the plant cold tolerance.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2013年第12期1110-1120,共11页 浙江大学学报(英文版)B辑(生物医学与生物技术)
基金 supported by the Science and Technology Key Project ofZhejiang Province(No.2009C12095) the National NaturalScience Foundation of China(No.31200527)
关键词 AnAPX Gene expression Cold stress Anthurium andraeanum 抗坏血酸过氧化物酶 转基因植物 APX 红掌 克隆 RT-PCR 聚合酶链反应 35S启动子
  • 相关文献

参考文献4

二级参考文献76

共引文献372

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部