期刊文献+

探讨变质作用对铬铁矿床的改造--古老岩层中铬铁矿找矿方向研究 被引量:1

A possible new chromium mineralization: the formation of chromium spinel in Gangshang ultramafic rocks of Sulu UHP belt
下载PDF
导出
摘要 岗上超镁铁质岩主要由纯橄岩和石榴橄榄岩组成,主要组成矿物橄榄石、铬铁矿、石榴子石、单斜辉石和斜方辉石等。铬铁矿的Cr#[Cr/(Cr+Mg)×100]从51到89变化,铬铁矿矿物表现为4期次演化的特点,反映了从岩浆期向榴辉岩相、角闪岩相和绿片岩相演化特征。随着超镁铁质岩的演化,铬铁矿中Cr#不断增大,而铬铁矿Mg#〔Mg×100/(Mg+Fe2+)〕不断减少,氧逸度不断增加。在绿片岩相-绿片角闪岩相退变质过程中,铬铁矿中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式。晚期剪切变形等次生变化有利于富铬铬铁矿矿物的形成和铬铁矿的富集。同时,绿片岩相变质作用降低了铬铁矿与其他硅酸盐矿物的结合强度,降低了开采强度和成本,使原本不易于开采的铬铁矿体变得可以开采。这些意味着该地区铬铁矿矿体展布要结合区域构造特征和变质作用进行研究、尤其是结合中晚期脆韧性构造进行分析。 Gangshang ultramafic rocks are mainly composed of garnet peridotites and dunite, which contain o/ivine, chromium spine/, diopside, endiopside, or/and garnet, orthopyroxene, amphibole and phlogopite. Chromium spinels in Gangshang ulttamatic rocks are composidonaily variable, with Cr# (molar100Cr/(Cr+Al)) varying from 51 to 89, and are associated with four stages of ultramafic rocks. With the increase of Cr# in chrome spinels Mg# (molarl00Mg/(Mg +Fe^2+))of chromium spinets decreases,whereas oxygen fugacity increases, as reflected by the composition of Gangshang chromium spinels. In the process of retrometamorphism of amphibole-facies and greemchist-facies, Cr, Mg and A1 of chromium spinels decrease, whereas Fe rehtively increase. In addition, Gangsbang ultramafic rocks experienced shearing reformation and CO metasomatism, which was helpful to the enrichment of chromium and the formation of chromium spinel. This mechanism is also useful to understanding the development of chromite deposits in some metamorphic areas and the enrichment of some chromite ore bodies.
出处 《中国地质》 CAS CSCD 北大核心 2013年第6期1912-1924,共13页 Geology in China
基金 国家重点基础研究发展规划973项目(2003CB716503) 国家自然科学基金重大项目(40399143) 博士后基金联合资助
关键词 铬铁矿 苏鲁超高压变质带 岗上超镁铁质岩 铬成矿作用 chromium spinel Sulu UHP belt Ganging ultramafic rock chromium mineralization
  • 相关文献

参考文献72

  • 1Kruger F J. The stratigraphy of the Bushveld Complex: A reappraisal and the relocation of the Main Zone boundaries [J]. S Aft: J Geol, 1990, 93: 376-381.
  • 2Kruger F J. Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGE and Ti-V magnetite deposits[J]. Mineralium Deposita, 2005, 40: 451-472.
  • 3Kinnaird J A, D. Hutchinson L. et al. Petrology and mineralisation of the southern Platreef: Northern limb of the Bushveld Complex, South Africa. Mineralium Deposita, 2005, 40(5): 576-597.
  • 4Mondal S K, Mathez E A. Origin of the .UG2 chromitite layer, Bushveld Complex[J]. Journal of Petrology, 2007, 48(3): 495-510.
  • 5钟宏,胡瑞忠,朱维光,刘秉光.层状岩体的成因及成矿作用[J].地学前缘,2007,14(2):159-172. 被引量:24
  • 6Dickey J S Jr. A hypothesis of origin for podiform chromite deposits J]. Geochimica et Cosmochimica Acta, 1975, 39: 1061-1074.
  • 7Lago B L, Rabinowicz M, Nicolas A. Podiform Chromite Ore Bodies: A Genetic Model [J]. Journal of Petrology, 1982, 23 (1): 103-125.
  • 8Dick H B, Fisher R L. Mineralogic studies of the residues of mantle melting: abyssal and alpine-type peridotites. In Kornprobst J, ed. Kimberlites II: The mantle and crust-mantle relationships [M]. Amsterdam, Elsevier, 1984, 295-308.
  • 9Johan Z, Dunlop H, Le Bel, et al. Origin of chromite deposits in ophiofite complexes: evidence for a volatile and sodium-rich reducing fluid phaseJ]. Fortschr Mineral, 1983, 61: 105-107.
  • 10Mcdonald J A . Liquid immiscibility as one factor in chromitite seam formation in the Bushveld Igneous Complex [J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1965, 60: 1674-1685.

二级参考文献26

共引文献144

同被引文献120

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部