摘要
Off-chip replacement (capacity and conflict) and coherent read misses in a distributed shared memory system cause execution to stall for hundreds of cycles. These off-chip replacement and coherent read misses are recurring and forming sequences of two or more misses called streams. Prior streaming techniques ignored reordering of misses and not-recently-accessed streams while streaming data. In this paper, we present stream prefetcher design that can deal with both problems. Our stream prefetcher design utilizes stream waiting rooms to store not-recently-accessed streams. Stream waiting rooms help remove more off-chip misses. Using trace based simulation% our stream prefetcher design can remove 8% to 66% (on average 40%) and 17% to 63% (on average 39%) replacement and coherent read misses, respectively. Using cycle-accurate full-system simulation, our design gives speedups from 1.00 to 1.17 of princeton application repository for shared-memory computers (PARSEC) workloads running on a distributed shared memory system with the exception of dedup and swaptions workloads.
Off-chip replacement (capacity and conflict) and coherent read misses in a distributed shared memory system cause execution to stall for hundreds of cycles. These off-chip replacement and coherent read misses are recurring and forming sequences of two or more misses called streams. Prior streaming techniques ignored reordering of misses and not-recently-accessed streams while streaming data. In this paper, we present stream prefetcher design that can deal with both problems. Our stream prefetcher design utilizes stream waiting rooms to store not-recently-accessed streams. Stream waiting rooms help remove more off-chip misses. Using trace based simulation% our stream prefetcher design can remove 8% to 66% (on average 40%) and 17% to 63% (on average 39%) replacement and coherent read misses, respectively. Using cycle-accurate full-system simulation, our design gives speedups from 1.00 to 1.17 of princeton application repository for shared-memory computers (PARSEC) workloads running on a distributed shared memory system with the exception of dedup and swaptions workloads.
基金
supported by Higher Education Commission(Pakistan)
National High Technology Research and Development Program of China(863 Program)(No.2008AA01A201)
Natural Science Foundation of China(Nos.60833004 and 60970002)
TNList Cross-discipline Foundation