摘要
To realize the continuous and variable gait transition for a new type of arthropod robot, a multi-level gait transition model is studied in this paper. The model is composed of central pattern generator (CPG) and saturation function. The CPG consists of four pairs of oscillators which can ex- hibit rhythmic activity when given stimulation signal S that lies in the range of saturation function. All oscillators receive the same S, but each pair of oscillators has different saturation functions. Multi- level gait transition can be realized when S changes regularly, as the oscillators start or stop oscilla- ting at different times. After computer simulation, the gait transition model is implemented in the ar- thropod robot. The experimental results show that ideal gait transition for the arthropod robot can be realized with the multi-level gait transition model.
To realize the continuous and variable gait transition for a new type of arthropod robot, a multi-level gait transition model is studied in this paper. The model is composed of central pattern generator (CPG) and saturation function. The CPG consists of four pairs of oscillators which can ex- hibit rhythmic activity when given stimulation signal S that lies in the range of saturation function. All oscillators receive the same S, but each pair of oscillators has different saturation functions. Multi- level gait transition can be realized when S changes regularly, as the oscillators start or stop oscilla- ting at different times. After computer simulation, the gait transition model is implemented in the ar- thropod robot. The experimental results show that ideal gait transition for the arthropod robot can be realized with the multi-level gait transition model.
基金
Supported by the Ministerial Level Advanced Research Foundation(65822576)