期刊文献+

HL-2A等离子体破裂期间逃逸电子演化模拟 被引量:1

Simulation of runaway electron evolution during disruptions in HL-2A tokamak
下载PDF
导出
摘要 采用数值模拟方法对托卡马克等离子体破裂期间的逃逸电子(RE)演化行为进行研究。程序所使用的物理模型包含了初级和次级两种RE产生机制,并耦合了麦克斯韦方程组。模拟结果显示:在等离子体破裂开始0.1-0.2ms后感应产生了很强的环向电场,持续约0.1ms之后该环向电场达到最大值,但是在大致2.5ms内逐渐衰减。同时模拟结果也证明了RE产生于等离子体中心处的局部区域,并且在破裂之后约1ms时间内就形成了RE束,实验中等离子体破裂之后出现的几十毫秒的电流平台主要是由RE携带的。从理论模拟与实验的对比中可以得出:HL-2A 15335次放电等离子体破裂期间欧姆电流转化为逃逸电流(RC)的转化率在40%-60%。次级产生机制在RE束的形成过程当中起到了关键作用。 The simulation of runaway electron(RE) and electric field evolution during HL-2A disruption is presented using a self-consistent model, which is constituted by Maxwell's equations and generation rate equation. The generation rate equation includes Dreicer and avalanche generation mechanisms of REs. The simulation shows that the electric field increases rapidly from 0.1-0.2ms after the disruption, reaches the maximum about 0.1 ms later, and lasts about 2.5ms. The simulation results also show that REs are produced mostly in the region around the magnetic axis and a RE beam forms at 1ms after disruption, tens of milliseconds steady-state current appearing after disruption is carried mainly by REs. Further, comparing between the simulation and the experimental results, it is found that 40%-60% of the Ohmic current is converted into runaway current(RC) during the disruption(discharge No. 15335) in HL-2A. Although the avalanche generation rate of REs is weaker than Dreicer generation mechanism in HL-2A, it plays a key role because of its larger action time than Dreicer generation mechanism.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2013年第4期297-303,共7页 Nuclear Fusion and Plasma Physics
基金 国际热核聚变实验堆(ITER)计划专项(2013GB109001 2013GB107003) 国家自然科学基金(11275042) 中国博士后科学基金(2012M520613 2013T60273) 中央高校基本科研业务费专项[DUT12RC(3)53]
关键词 逃逸电子 环向电场 等离子体破裂 HL-2A装置 Runaway electrons Toroidal electric field Plasma disruption HL-2A tokamak
  • 相关文献

参考文献18

  • 1Gill R D. Generation and loss of runaway electrons following disruptions in JET [J]. Nucl. Fusion, 1993,33(11): 1613-1625.
  • 2Gill R D, Alper B, de Baar M, et al. Behaviour of disruption generated runaways in JET [J]. Nucl. Fusion, 2002, 42(8): 1039-1044.
  • 3Gill R D, Alper B, Edwards A W, et al. Direct observations of runaway electrons during disruptions in the JET tokamak [J]. Nucl. Fusion, 2000, 40(2): 163-174.
  • 4Ninomiya H, JT-60U Team. JT-60U latest results and future prospects [J]. Phys. Fluids B, 1992, 4(7): 2070-2080.
  • 5Eriksson L-C~ Helander E Simulation of runaway electrons during tokamak disruptions [J]. Comput. Phys. Commun., 2003, 154(3): 175-196.
  • 6Dreicer H. Electron and ion runaway in a fully ionized gas I [J]. Phys. Rev., 1959, 115(2): 238-249.
  • 7Dreicer H. Electron and ion runaway in a fully ionized gas II [J]. Phys. Rev., 1960, 117(2): 329-342.
  • 8Connor J W, Hastie R J. Relativistic limitations on runaway electrons [J]. Nucl. Fusion, 1975, 150): 415-424.
  • 9Kruskal M D, Bernstein I B. Princeton plasma physics laboratory report [R]. No. MATT-Q-20, 1962. 174.
  • 10Rosenbluth M N, Putvinski S V. Theory for avalanche of runaway electrons in tokamaks [J]. Nucl. Fusion, 1997, 37(10): 1355-1362.

二级参考文献4

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部