期刊文献+

具有自适应MB-LBP前置滤波的CAMShift人脸跟踪算法 被引量:6

CAMShift face tracking with adaptive MB-LBP pre-filter
下载PDF
导出
摘要 基于颜色分布的连续自适应均值移动(CAMShift)人脸跟踪算法简单、易于实现,被广泛应用于实时跟踪。但因其采用肤色模型作为跟踪模式,所以当目标处于类肤色背景区域时,跟踪窗口极易错误收敛到背景区域从而导致跟踪失败。为此,本文提出一种具有自适应MB-LBP前置滤波的CAMShift跟踪算法。首先训练一个能检测人脸基本特征的级联MB-LBP节点分类器。当跟踪窗口进入类肤色干扰区时,系统自适应地把该分类器接入作为CAMShift跟踪算法的前置滤波器,以排除背景中的类肤色干扰,提高算法的鲁棒性。实验结果表明,该算法既能有效排除背景中的类肤色干扰、显著提高CAMShift人脸跟踪算法的鲁棒性,又能保持人脸跟踪的实时性。 Since the color probability distribution based continuous adaptive mean shift (CAMShift) face tracking algorithm is simple and easy to be implemented,it is widely used in real-time tracking applications.However,because the CAMShift takes skin color histogram as the tracking model,its tracking is easy to fail when the target appears in a skin-color-like background region.For that,a CAMShift face tracking algorithm using adaptive Multi-Block Local Binary Pattern (MB-LBP) pre-filter is proposed in this paper.Firstly,a MB-LBP cascade classifier,which can well detect the basic characteristics of the face,is trained.If the tracking window enters a skin-color like background region,this pre-filter is then adaptively inserted to eliminate the skin-like-color background interferences.Consequently,the robustness of the tracking algorithm is improved.Experimental results have proved the superior tracking ability of the proposed algorithm under skincolor-like background interferences.
出处 《信号处理》 CSCD 北大核心 2013年第11期1540-1546,共7页 Journal of Signal Processing
基金 国家自然科学基金计划项目(61250009) 福建省自然科学基金计划项目(2011J01354)
关键词 目标跟踪 人脸跟踪 连续自适应均值移动算法 多块局部二元模式 Object tracking Face tracking Continuous adaptive mean shift Multi-block local binary pattern
  • 相关文献

参考文献14

  • 1Bradski G R. Computer vision face tracking for use in a perceptual user interface [ J]. Intel Technology Journal, 1998 (Q2): 1-15.
  • 2刘强.快速人脸跟踪系统[硕士学位论文].泉州:华侨大学,2005.
  • 3赵文倩,匡逊君,李明富.基于改进的Camshift运动目标跟踪算法的研究[J].信息技术,2012,36(7):165-169. 被引量:11
  • 4Ning J, Zhang L, Zhang D, et al. Robust object tracking using joint color-texture histogram[ J~. International Jour- nal of Pattern Recognition and Artificial Intelligence, 2009, 23(07) : 1245-1263.
  • 5Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distri- butions[JJ. Pattern recognition, 1996, 29(1) : 51-59.
  • 6Tavakoli H R, Moin M S. Mean-shift video tracking using color-LSN histogram[ C]. Proceedings of the 5th Interna- tional Symposium on Teleconununications, 2010 : 812-816.
  • 7Yin J, Han Y, Li J, et al. Research on Real-Time Ob- ject Tracking by Improved Camshift[ C]. Proceedings of International Symposium on Computer Network and Multi- media Technology, 2009 : 1-4.
  • 8Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 1: 511-518.
  • 9蔡灿辉,朱建清.采用Gentle AdaBoost和嵌套级联结构的实时人脸检测[J].信号处理,2013,29(8):956-963. 被引量:11
  • 10朱建清.智能视频监控系统中的人脸检测和人脸跟踪技术的研究[硕士学位论文].泉州:华侨大学,2012.

二级参考文献31

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2Alper Yilmaz.Object Tracking:A Survey[J].ACM Computing Surveys,2006,38:4,Article13.
  • 3Jie Shao,Zhou S K,Qin fen Zheng.Moving Object from Moving Platform[C].Pattern.Reco-gnition,2004.Proceedings of the17th Inter-national Conference,2004,1(4):215-218.
  • 4BradskiGR.ComPuter vision face tracking as a component of a Per-ceptual user interfaee[C] //Proeeedings Fourth IEEE Workshop Ap-plications of Computer Vision.Berlin,Germany,1998:214-219.
  • 5Gary R Bradski.Computer Vision Face Tracking For Use in a Percep-tualUser Inerface[J].Intel Technology Journal,1998(Q2):1-15.
  • 6Liu Qiang,Cai Canhui.Duel Search Window Based Face Tracking[C].International Symposium on Intelligent Signal Processing and Communication Systems,2006:279-282.
  • 7Mathias Kolsch,Matthew Turk.Fast2D Hand Tracking with Flocks of Features and Multi-Cue Integration[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,2004:2-20.
  • 8Cha Z and Zhang Z Y. A Survey of Recent Advances in Face Detection[ R]. Microsoft Research, 2012.
  • 9Freund Y, Schapire R E. Experiments with a new boos- ting algorithm[C]. Proc. of the 13th Conf. Machine Learning, 1996 : 148-156.
  • 10Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [ J ]. Machine Learning, 1999, 37(3) :297-336.

共引文献20

同被引文献52

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2Kalal Z,Mikolajczyk K,Matas J.Face-TLD:tracking-leaming- detection applied to faces[C]//Proceedings of the 17th Interna- tional Conference on Image Processing.Washington DC:IEEE,2010:3789-3792.
  • 3Bay H,Tuytelaars T,Van G L Surf:speeded up robust features [M].Computer Vision-ECCV 2006.Berlin Heidelberg:Spring- er,2006:404-417.
  • 4Chang W C,Cho C W.Online boosting for vehicle detection [J].IEEE Transactions on Systems Man and Cybemetics-Part B:Cybernetics,2010,3:892-902.
  • 5Wanjale K H,Bhoomkar A,Kulkami A,et al.Use of haar cas- cade classifier for face tracking system in real time video[J].In- ternational Journal of Engineering Research & Technology,2013,4(2):2348-2353.
  • 6Ozuysal M,Calonder M,Lepetit V,et al.Fast keypoint recogni- tion using random fems[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence,2010,32(3):448-461.
  • 7Ji Q G,Zhang P,Du J H.Robust vision tracking by online ran- dom fems and template library[J].Signal Processing:Image Communication,2014,29(5):590-598.
  • 8Dinh TB,Vo N,Medioni G.Context tracker:exploring support- ers and distracters in unconstrained environments[C]// Proceed- ings of IEEE Conference on Computer Vision and Pattern Recog- nition.Colorado,USA:IEEE,2011:1177-1184.
  • 9Kalal Z,Matas J,Mikolajczyk K.P-N learning:bootstrapping binary classiiiers by structural constraints [C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Boston,USA:IEEE,2010;49-56.
  • 10Stalder S,Grabner H,Gool L V.SemiBoost,boosting for semi- supervised learning[C]//Proceedings of ICCV'09 WS on On- line Learning for Computer Vision.Kyoto,Japan:IEEE,2009:1203-1213.

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部