期刊文献+

枝节碳纳米管断裂性能的原子有限元模拟 被引量:1

Atomic Finite Element Simulation for Fracture Property of Branched Carbon Nanotubes
下载PDF
导出
摘要 枝节碳纳米管及其相关力学性能的研究在现代硅微电子工业中具有重要意义。采用原子级有限元法(AFEM)在原子尺度研究了"Y"型枝节单壁碳纳米管(YBSCNT)结构的断裂性能,并探讨了YBSCNT的直径和长度对结构的等效弹性模量、断裂应变和抗拉强度力学性能的影响。数值模拟表明:随着直径的增大,YBSCNT的等效弹性模量、断裂应变和抗拉强度均减小;随着长度的增大,YBSCNT的等效弹性模量减小,断裂应变和抗拉强度增大。本文的研究方法可用于枝状结构碳纳米管等效力学性能的预测,为今后枝节纳米管的优化设计提供有力的工具。 Branched carbon nanotubes and the related studies on their mechanical properties have important significance in modern silicon microelectronics industry. The fracture properties of the "Y" shaped branched single-walled carbon nanotubos (YBSCNTs) were investigated !n atomic-scale by using atomic finite element method (AFEM). Moreover, the influences of the diameter and the length of the YBSCNTs on the equivalent elastic modulus, the fracture strain and the tensile strength were also discussed. The results of numerical simulations show that with the increasing tube diameter, the equivalent elastic modulus, the fracture strain and the tensile strength of the YBSCNTs will decrease, with the increasing length, the equivalent elastic modulus will decreases, while the fracture strain and the tensile strength will increase. The suggested method provides a convenient tool for estimating the effective mechanical properties, therefore, which is helpful for the optimal design of YBSCNTs.
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2013年第3期13-16,36,共5页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 国家自然科学基金(11372126/11162014)
关键词 枝节碳纳米管 原子有限元 断裂性能 力学性能 branched carbon nanotubes atomic finite element fracture property mechanical property
  • 相关文献

参考文献3

二级参考文献14

  • 1Yakobson B I, Brabec C J, Bernnolc J. Nanomechanics of carbon tubes: Instabilities beyond linear response [J]. PhysRevLettB,1966,76(14):2 511--2 514.
  • 2Guoxin Cao, Xi Chen. Buckling of single-walled carbon nanotubes upon bending: molecular dynamics simulations and finite element method[J]. Physical Review B, 2006, 73:155--435.
  • 3Wang X Y, Wang X. Numerical simulation for bending modulus of carbon nanotubes and some explana- tions for experiment[J]. Composites: Part B, 2004, 35:79--86.
  • 4Libai A, Simmons J G. The Nonlinear Theory of Elastic Shells[M]. Cambridge: Cambridge University Press, 1998.
  • 5Ugarte D, Chatelain A and WA de Heer. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274(13) :1897.
  • 6Ajayan PM, Ebbsen TW, lchihashi T, Iijima S, Tanigaki K and Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362 : 522.
  • 7Guerret-Piecourt C, Le Bouar, Loiseau A and Pascard H. Relation between metal electronic-structure and morphology of metal-compounds inside carbon nanotubes. Nature, 1994, 372:761.
  • 8Iijima S. Helical microtubes of graphitic carbon. Nature, 1991, 354(6348) :56.
  • 9Cheng Huiming. Carbon Nanotubes: Synthesis, Microstructure,Properties and Applications. Beijing: Chemistry Industry Press,2002.
  • 10Dujardin E, Ebbesen TW, Hiura H and Tanigaki K. Capillarity and wetting of carbon nanotubes. Science, 1994, 265 : 1850.

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部