期刊文献+

三维LOD-FDTD方法在PMC边界处的精确格式

Accurate Algorithm on PMC Boundary for 3D LOD-FDTD Method
下载PDF
导出
摘要 证明了局部一维时域有限差分(LOD-FDTD)方法实现理想磁导体(PMC)边界时的待求场分量系数与传统的LOD-FDTD方法系数不同。通过在获得该系数前应用理想导体边界条件,得到对应的修正系数。计算了单个PMC立方体和对称的两个PMC立方体的双站RCS。计算结果表明,PMC边界作为理想导体表面时,传统LOD-FDTD方法计算误差较大,采用修正系数的计算结果与传统FDTD方法计算结果更为吻合;PMC边界作为截断计算空间的对称面,采用修正系数的计算结果与传统LOD-FDTD方法计算结果相同。采用修正系数处理PMC边界无需区分PMC边界是理想磁导体表面还是截断计算空间的对称面,具有统一的表达式,计算理想磁导体表面较传统LOD-FDTD方法误差更小。 The field coefficient on perfect magnetic conductor boundary is proved to be different from that in the conventional locally one-dimensional finite-difference time-domain ( LOD-FDTD) calculation. The correction coefficient is derived by setting PMC boundary condition before the conventional field coefficient is obtained from the implicit equations. Bistatic RCS calculations of a PMC cube and two symmetrical PMC cubes are provided by using correction coefficient method, conventional LOD -FDTD method and FDTD method, respectively. For the surface of perfect conductor, numerical results of correction coefficient meth-od agree better with those of conventional FDTD. For the symmetry plane truncated computing space, nu-merical results of correction coefficient method agree well with those of conventional LOD -FDTD. The theory proposed in this paper is validated. Correction coefficient method has unified expressions and it is found that less calculation errors occur than conventional LOD -FDTD method is used.
出处 《电讯技术》 北大核心 2013年第12期1638-1642,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60971041)~~
关键词 理想磁导体边界 时域有限差分方法 局部一维时域有限差分方法 PMC boundary finite-difference time-domain ( FDTD) method locally one-dimensional fi-nite-difference time-domain ( LOD-FDTD) method
  • 相关文献

参考文献11

二级参考文献25

  • 1魏光辉,陈亚洲,孙永卫.微波辐照对无线电引信的影响与作用机理[J].强激光与粒子束,2005,17(1):88-92. 被引量:32
  • 2焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报,2006,21(1):16-20. 被引量:58
  • 3SINGH G, TAN E L, CHEN Z N. A split-step FDTD method for 3-D Maxwell's equations in gener- al anisotropic media[J]. IEEE Transactions on An- tennas and Propagation, 2010, 58(11): 3647-3657.
  • 4NAMIKI T. A new FDTD algorithm based on alterna- ting-direction implicit method[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(10): 2003-2007.
  • 5ROUF H K, COSTEN F, GARCIA D G. Reduction of numerical errors in frequency dpendent ADI-FDTD [J]. IEEE Electronics Letters, 2010, 46(7): 489- 490.
  • 6SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme [ J ]. Electronics Letters, 2005, 41(19): 1046-1047.
  • 7TAN E L. Acceleration of LOD-FDTD method using fundamental scheme on graphics processor units[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(12): 648-650.
  • 8KONDYLIS G D, FLAVIIS F D, POTTIE G J, et al. A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equa- tion[J]. IEEE Trans. MTT, 2001, (7): 1310-1320.
  • 9LIU B, GAO B Q, TAN W, et al. A new FDTD Aal- gorithm-AD1/R-FDTD[ C] / / Electromagnetic Compati- bility, 2002 3rd International Symposium on, May 21- 24, 2002, IEEE 0-7803-7277-8/02: 250-253.
  • 10AHMED I, CHUA E K, LIE P, et al. Development of the three-dimensional unconditionally stable LOD- FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3596-3600.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部