期刊文献+

一类高阶中立型泛函微分方程的周期解

Periodic Solutions for a Kind of Higher Order Neutral Functional Differential Equation
下载PDF
导出
摘要 本文利用Mawhin重合度理论,研究了一类高阶中立型泛函微分方程周期解的存在性,给出这一类方程至少存在一个T周期解的充分性条件。 Using Mawhin’ s coincidence degree theorem, in this paper, the existence of periodic solutions for a kind of higher order neutral functional differential equation is studied, and the sufficient condition for existence of -periodic solutions is given.
出处 《安庆师范学院学报(自然科学版)》 2013年第4期14-18,共5页 Journal of Anqing Teachers College(Natural Science Edition)
基金 高等学校博士点基金(20113401110001) 安徽省自然科学基金(1308085MA01) 安徽大学研究生学术创新研究项目(10117700020)资助
关键词 周期解 Mawhin重合度 高阶 中立型泛函微分方程 periodic solutions Mawhin’ s coincidence degree higher order neutral functional differential equation
  • 相关文献

参考文献9

  • 1Wang Lianglong,Wang Zhicheng,Zou Xingfu. Periodic Solutions of Neutral Functional Differential Equations[J].Journal of the London Mathematical Society,2002,(02):439-452.doi:10.1112/S0024610701003076.
  • 2Wang Lianglong,Wang Zhicheng. Controllability of Abstract Neutral Functional Differential Systems with Infinite Delay[J].Dynamics of Continuous Discrete and Impulsive Systems Series B:Applications and Algorithms,2002,(02):59-70.
  • 3Lu Shiping,Gui Zhanjie,Ge Weigao. Periodic solutions to a second order nonlinear neutral functional differential equation in the critical case[J].Nonlinear Analysis-Theory Methods and Applications,2006.1587-1607.
  • 4Lu Shiping,Ge Weigao. Periodic solutions of neutral differential equation with multiple deviating arguments[J].Applied Mathe-matics and Computation,2004.705-717.
  • 5房辉.高阶非线性中立型微分方程的周期解[J].纯粹数学与应用数学,2000,16(2):14-18. 被引量:4
  • 6Wang K,Lu S P. On the existence of periodic solution for a kind of high-order nonlinear neutral differential equations[J].Journal of Mathematical Analysis and Applications,2007,(02):1161-1173.
  • 7陈仕洲.具无穷时滞高阶中立型微分方程的周期解[J].纯粹数学与应用数学,2010,26(3):376-379. 被引量:2
  • 8陈新一.高阶非线性中立型泛函微分方程周期解的存在性[J].山东大学学报(理学版),2011,46(8):47-51. 被引量:4
  • 9Gines R E,Mawhin J L. Coincidence degree and nonlinear if-ferential quations[M].Heidelberg:Springer-Verlag Berlin,1977.

二级参考文献24

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部