期刊文献+

细胞囊泡运输系统与人类健康——2013年诺贝尔生理学或医学奖简介 被引量:1

Cell vesicle trafficking system and human health:A brief introduction of the Nobel Prize in Physiology or Medicine 2013
下载PDF
导出
摘要 人类对健康的孜孜以求推动了生命科学领域的不断创新和发展,从20世纪80年代兰迪·W·谢克曼(Randy W.Schekman)和詹姆斯·E·罗斯曼(James E.Rothman)分别对酵母细胞进行研究,通过生物电镜观察到囊泡运输系统并给出定义,到托马斯·C·苏德霍夫(Thomas C.S(u|¨)dhof)在神经细胞突触传导中证实了囊泡运输系统的时空调控性,囊泡运输系统作为细胞的基本组成,受到了越来越深入的研究。囊泡运输系统经由精密的调控广泛地参与诸多生命活动过程,与多种生命现象相关,囊泡运输系统障碍可能导致多种人类疾病,深入透彻地理解这些生物学现象和作用机制,对于攻克人类疾病,保障人类健康具有十分深远的意义。 The field of life science has been continually developed through mankind creative and diligent studies in pursuit of human health. In the1980s of last century, studies of Randy W. Schekman in yeast and James E. Rothman via biological electronic microscope and vesicle fusion experiments mapped out one of the body vesicle transport machinery leading to the definition and function of vesicle trafficking system, while investigation of Thomas C. Sfidhof in neuronal communication via synapses have approved precise regulation of vesicle trafficking system. Vesicle trafficking system is one of the fundamental units of cells and has been involved in many biological processes. Defects in vesicle trafficking system have deleterious effects and could lead to many human diseases. A deep understanding of the mechanisms of vesicle trafficking system will yield new insights into our human health for prevention and therapies of the related human diseases.
作者 李雪 林鑫华
出处 《自然杂志》 北大核心 2013年第6期416-421,共6页 Chinese Journal of Nature
关键词 囊泡运输系统 内膜系统 蛋白选运 蛋白分泌 诺贝尔生理学或医学奖 vesicle trafficking system, endomembrane system, protein sorting and vesicular transport, protein secretion, Nobel Prize in Physiology or Medicine
  • 相关文献

参考文献30

  • 1NOVICK P, SCHEKMAN R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces eerevisiae [J]. Proc Natl Acad Sci USA, 1979, 76(4): 1858-1862.
  • 2NOVICK P, SCHEKMAN R. Export of major cell surface proteins is blocked in yeast secretory mutants [J]. J Cell Biol, 1983, 96(2): 541-547.
  • 3NOVICK P, FERRO S, SCHEKMAN R. Order of events in the yeast secretory pathway [J]. Cell, 1981, 25(2): 461-469.
  • 4LEE M C, MILLER E A, GOLDBERG J, et al. Bi-directional protein transport between the ER and Golgi [J]. Annu Rev Cell Dev Biol, 2004, 20: 87-123.
  • 5BALCH W E, DUNPHY W G, BRAELL W A, et al. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylgluco- samine [J]. Cell, 1984, 39(2): 405-416.
  • 6BRAELL W A, BALCH W E, DOBBERTIN D C, et al. The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cistemae [J]. Cell, 1984, 39(3): 511-524.
  • 7BALCH W E, GLICK B S, ROTHMAN J E. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system [J]. Cell, 1984, 39(3): 525-536.
  • 8SUDHOF T C, ROTHMAN J E. Membrane fusion: grappling with SNARE and SM proteins [J]. Science, 2009, 323(5913): 474-477.
  • 9BRANDS R, SNIDER M D, HIND Y, et al. Retention of membrane proteins by the endoplasmic reticulum [J]. J Cell Biol, 1985, 101(5): 1724-1732.
  • 10DUNPHY W G, BRANDS R, ROTHMAN J E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cistemae of the Golgi stack [J]. Cell, 1985, 40(2): 463-472.

同被引文献14

  • 1Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29.
  • 2Marx V. Tracking metastasis and tricking cancer[J]. Nature, 2013, 494(7435): 133-138.
  • 3Hirsch FR, Bunn PA. Epidermal growth factor receptor inhibitors in lung cancer: smaller or larger molecules, selected or unselected populations?[J] J Clin Oncol, 2005, 23(36): 9044-9047.
  • 4Paez JG, Jnne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy[J]. Science, 2004, 304(5676): 1497-1500.
  • 5Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in personalisation of lung cancer treatment[J]. Lancet, 2013, 382(9893): 720-731.
  • 6Miyata T, Ohnishi H, Suzuki J, et al. Involvement of syntaxin 4 in the transport of membrane-type 1 matrix metalloproteinase to the plasma membrane in human gastric epithelial cells[J]. Biochem Biophys Res Commun, 2004, 323(1): 118-124.
  • 7Kean MJ, Williams KC, Skalski M, et al. VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion[J]. J Cell Sci, 2009, 122(22): 4089-4098.
  • 8Suh YH, Terashima A, Petralia RS, et al. A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking[J]. Nat Neurosci, 2010, 13(3): 338-343.
  • 9Holt M, Varoqueaux F, Wiederhold K, et al. Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression[J]. J Biol Chem, 2006, 281(25): 17076-17083.
  • 10Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部