期刊文献+

Chaboche强化模型的使用条件及适用性 被引量:2

The using condition and applicability of Chaboche hardening model
下载PDF
导出
摘要 基于结合Chaboche模型的ISO-KIN强化模型和Mises屈服准则,推导复杂加载模式下非线性混合强化材料模型,提出以出现反向加载来判定模拟过程中是否需要使用结合Chaboche模型的ISO-KIN强化模型的充分条件的应用原则。采用径向返回算法计算应力应变增量,实现其在有限元程序ABAQUS上进行板料塑性成形模拟的应用。以单凸型蒙皮和复杂S型蒙皮拉形工艺为例,计算不同材料强化模型对板料回弹量的影响,并与试验结果进行对比。结果表明,对于出现反向加载的复杂受力情况,相比于线性随动强化模型和各向同性强化模型,结合Chaboche模型的ISO-KIN强化模型对回弹的预测精度更高。 In this work a non-linear combined hardening law during the complicated loading condition based on the Chaboche model combined isotropic-kinematic hardening law and Mises yielding criterion has been derived. And it is pointed out that reverse loading is the criterion to decide whether to use the Chaboche type combined isotropic-kinematic hardening law or not. Return mapping algorithm was applied to calculate the stress and strain increment and a material user subroutine program was developed base on the ABAQUS interface for the model. Taking the single curve skin and complicated S-shape skin as examples, the effects of different hardening law on the spring-back in the stretch forming process was also analyzed and compared. The simulation results show that during the complicated loading condition which include reverse loading, the combined isotropic-kinematic hardening law has the better spring-back prediction compared with the pure isotropic and kinematic hardening law in the stretch forming process, which is verified by the experimental results.
出处 《塑性工程学报》 CAS CSCD 北大核心 2013年第6期45-50,共6页 Journal of Plasticity Engineering
基金 北京工商大学青年教师科研启动基金资助项目(QN-JJ2012-32) 北京工商大学大学生科学研究与创业行动计划
关键词 拉弯成形工艺 材料强化模型 回弹 ABAQUS 用户子程 stretch bending hardening law spring-back ABAQUS user subroutine
  • 相关文献

参考文献9

  • 1Kwansoo Chung, Myoung-Gyu Lee, Daeyong Kim, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and on-quadratic anisotropic yield functions Part I: theory and formula- tion[J]. International Journal of Plasticity, 2005. 21 (5) :861-882.
  • 2张冬娟,崔振山,李玉强,阮雪榆.材料强化模型对板料回弹量的影响[J].上海交通大学学报,2006,40(10):1671-1674. 被引量:11
  • 3Prager W. A new method of analyzing stresses and strains in work-hardening piastic solids[J]. Journal of Applied Mechanics, 1956. 78 ; 493-497.
  • 4Ziegler H. A modification o f Prager's hardening rule [J]. Quarterly of Applied Mathematics, 1959. 17 : 55-65.
  • 5Khan A S, Huang S. Continuum theory of plasticity [M]. New York:John Wiley and Sons Inc, 1995.
  • 6Chaboche J L, Rousselier G. On the plastic and visco- plastic constitutive equations, Part Ⅰ and Part Ⅱ[J]. Journal Pressure Vessel Technology, 1983. 105 (2) : 153-165.
  • 7Kwansoo Chung, Owen Richmond. A deformation theo- ry of plasticity based on minimum work paths[J]. In- ternational Journal of Plasticity, 1993. 9(8) :907-920.
  • 8J W Yoon,D Y Yang,K Chung. Elasto-plastic finite el- ement method based on incremental deformation theory and continuum based shell elements for planar aniso- tropic sheet materials[J]. Computer Methods in Ap- plied Mechanics and Engineering, 1999. 174(1 2) :23-56.
  • 9Kwansoo Chung, Myoung-Gyu Lee, Daeyong Kim. Spring-back evaluation of automotive sheets based on i- sotropic-kinematic hardening laws and on-quadratic ani- sotropic yield functions Part Ⅲ: applications[J]. Inter- national Journal of Plasticity, 2005.21 (5): 915-953.

二级参考文献8

  • 1[1]Carden W D,Geng L M,Matlock D K,et al.Measurement of springback[J].International Journal of Mechanical Sciences,2002,44:79-101.
  • 2[2]Fusahito Yoshida,Takeshi Uemori,Kenji Fujiwara.Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain[J].International Journal of Plasticity,2002,18:633-659.
  • 3[3]Prager W.A new method so analyzing stresses and strains in work-hardening plastic solids[J].ASME Journal of Applied Mechanics,1956,78:493-497.
  • 4[4]Ziegler H.A modification of Prager's hardening rule[J].Quarterly of Applied Mathematics,1959,17:55-65.
  • 5[5]Mroz Z.On the description of anisotropic work hardening[J].Journal of Mechanics and Physics of Solids,1967,15:163-175.
  • 6[6]Lemaitre J,Chaboche J L.Mechanics of solid materials[M].Cambridge:Cambridge University Press,1990.161-241.
  • 7[7]Chaboche J L.Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J].International Journal of Plasticity,1989,5:247-302.
  • 8[8]王勖成,邵敏.有限单元法基本原理和数值模拟[M].北京:清华大学出版社,1997.

共引文献10

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部