期刊文献+

一种大规模小波神经网络的拟牛顿学习算法

A Quasi-Newton Learning Algorithm of Large Scale Wavelet Neural Network
下载PDF
导出
摘要 为解决大规模小波神经网络的优化问题,提出了一种快速的拟牛顿学习算法,即使用改进Wolfe线搜索的仅存储梯度向量拟牛顿算法.该算法每次迭代中最多计算两次梯度,并且计算中仅需存储递度向量,避开了近似Hessian矩阵的存储问题,从而大大降低了计算量和存储需求.仿真验证了算法的有效性和可行性. To solve the optimization problem of large scale wavelet neural network, a fast Quasi - Newton learn- ing algorithm, which only saves gradient vector Quasi -Newton algorithm by using an improved Wolfe line search, is proposed. In every iteration step, the algorithm needs to calculate two gradients at most, and only saves the gradient vector rather than Hessian approximation matrix, which can reduce the computation and mere- ory requirements. Its validity and feasibility are proved by the simulations
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2013年第6期54-60,共7页 Journal of Kunming University of Science and Technology(Natural Science)
基金 陕西省自然科学基金项目(2007F49)
关键词 小波 神经网络 无约束最优化问题 拟牛顿算法 WOLFE线搜索 wavelet neural network unconstrained optimization problem quasi - Newton algorithm Wolfeline search
  • 相关文献

参考文献9

二级参考文献19

  • 1韩继业,刘光辉.无约束最优化线搜索一般模型及BFGS方法的整体收敛性[J].应用数学学报,1995,18(1):112-122. 被引量:20
  • 2朱训芝,唐焕文.一种新的无约束优化线搜索算法[J].运筹与管理,2005,14(5):18-23. 被引量:5
  • 3邢进生.[D].西安:西安交通大学,2000年.
  • 4Hunt K J, Sbaxbaro D, Zbikowski R, et al. Neural networks for control systems- A survey [J]. Automatica, 1992, 28(6):1083-1112.
  • 5Piche S W. Steepest descent algorithms for neural network controllers and filters [J]. IEEE Trans Neural Networks, 1994, 5:198-212.
  • 6Seborg D E, Henson M A, Nahas E P. Nonlinear internal model control strategy for neural network models [ J ]. Comp Chem Eng , 1992, 16(12) :1039 - 1057.
  • 7M T, Mohammad B M. Training feedforwant networks with the Marquardt algorithm [J]. IEEE Trans on Neural Networks,1994, 5(6) : 989 - 993.
  • 8Battiti R. First and second-order methods for learning [ J]. Neural Computation,1992, 4:141 - 166
  • 9Gill E P, Murray W, Saunders A M, Wright H M. A Note on a Sufficient-Decrease Criterion for a Nonderivative Steplength Procedure[J]. Mathematical Programming, 1982, 23: 349-352.
  • 10Brent R P. Algorithms for Minimization without Derivatives[J]. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部