期刊文献+

Gr-PA66-POB复合涂层的制备及其摩擦学性能

Preparation and tribological properties of the Gr-PA66-POB composite coatings
下载PDF
导出
摘要 采用氧化-分散-还原法制备十八胺修饰的石墨烯(graphene,Gr),再以烧结法成功制备石墨烯(Gr)-聚酰胺(polyamide66,PA66)-聚苯酯(polyoxybenzoate,POB)复合固体润滑涂层,并通过环块磨损实验考察了该复合涂层的摩擦学性能.结果表明:1)Gr-PA66-POB的耐磨寿命显著高于PA66-POB涂层,当w(Gr)=25%时,其耐磨性能最佳,磨损率比不添加Gr时低31%;2)不同w(Gr)下复合涂层的失效模式:w(Gr)≤15%时,以黏着磨损和犁沟磨损为主;w(Gr)=20%时,以塑性变形和犁沟磨损为主;w(Gr)=25%时,表现为轻微的犁沟磨损;w(Gr)=30%时,主要表现为疲劳磨损. Octadecylamine-modified graphene (Gr) is prepared by an oxidation-dispersion-reduction process and fabricated composite coatings of polyoxybenzoate Gr-polyamide (PA66)-POB are obtained through a sintering process. The tribological properties of the composite coatings are investigated by the ring on block wear test on a MRH-3 machine. The results show that the abra- sion resistance of the composite coatings is significantly better than the POB-PA66 coating. The optimum mass fraction of graphene in composite is 25 %. The wear rate of Gr-PA66-POB including 25% Gr is 31% lower than that of POB-PA66 coating. The main failure mode is adhesive and plou- ghing wear while the Gr content is less than 15~. When the coating Gr content is 20%, the failure mode is slight plastic deformation and ploughing wear. When the Gr content is 25%, the failure mode is mainly slight furrow. However, while the mass fraction of Gr in the composite coating is 30%, fatigue wear is the main failure mode.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2013年第4期31-34,50,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(21075107)
关键词 聚苯酯I聚酰胺 石墨烯 固体润滑 复合涂层 polyoxybenzoate polyamide66 graphene composite coating tribological
  • 相关文献

参考文献14

  • 1LONG Chunguang, HUA Manyu. Study on POM composites modified by ekonol and lubricant [J]. J Thermo- plast Compos Mater, 2005, 18(5): 381-391.
  • 2QU J J, TIAN X, ZHOU N N. Characteristics of traveling wave ultrasonic motor under atmosphere and vacuum cycle condition [J]. Vacuum, 2008, 82(11): 1302-1305.
  • 3LONG Chunguang, WANG Xiayu. Wear and mechanical properties of Ekonol/G/MoS2/PEEK composites [J]. J Mater Sci, 2004, 39(4): 1499-1501.
  • 4WANG Jian, GUO Yayun, ZHAO Wenzhen. Chemical characterisation of polyoxybenzoate matrix composite materials by high performance liquid chromatography [J]. Plast Rubber Compos, 2011, 40(3): 116-120.
  • 5CHEN Guohua, WENG Wengui, WU Dajun, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon, 2004, 42(4): 753-759.
  • 6姚承军,汪晓明,李莹莹,王健.一维到二维石墨烯声子热传导的分子动力学模拟[J].扬州大学学报(自然科学版),2013,16(1):22-26. 被引量:3
  • 7SHIN Y J, STROMBERG R, NAY R, et al. Frictional characteristics of exfoliated and epitaxial graphene [J]. Carbon, 2011, 49(12): 4070-4073.
  • 8KANDANUR S S, RAFIEE M A, YAVARI F, et al. Suppression of wear in graphene polymer composites[J]. Carbon, 2012, 50(9): 3178-3183.
  • 9LOMEDA J R, DOYLE C D, KOSYNKIN D V, et al. Diazonium functionalization of surfaetant-wrapped chemi- cally converted graphene sheets [J]. J Am Chem Soc, 2008, 130(48) : 16201-16206.
  • 10LIN Jinshan, WANG Liwei, CHEN Guohua. Modification of graphene platelets and their tribological proper- ties as a lubricant additive[J]. Tribol Lett, 2011, 41(1) ~ 209-215.

二级参考文献25

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
  • 2KLEMENS P G. Theory of the a-plane thermal conductivity of graphite [J]. J Wide Bandgap Mater, 2000, 7(4) : 332-339.
  • 3GHOSH S, BAO Wenzhong, NIKA D L, et al. Dimensional crossover of thermal transport in few-layer gra- phene [J]. Nat Mater, 2010, 9(7): 555-558.
  • 4SHI Lipeng, XIONG Shijie. Phonon thermal conductance of disordered graphene strips with armchair edges [J]. Phys Lett A, 2009, 373(5): 563-569.
  • 5LAN Jinghua, WANG Jiansheng, GAN C K, et al. Edge effects on quantum thermal transport in graphene na- noribbons: tight-binding calculations [J]. Phys Rev B, 2009, 79(11): 115401-115405.
  • 6JIANG Jinwu, WANG Jiansheng, LI Baowen. Thermal conductance of graphene and dimerite [J]. Phys Rev B, 2009, 79(20): 205418-205423.
  • 7CAHILL D G, FORD W K, GOODSON K E, et al. Nanoscale thermal transport [J]. J Appl Phys, 2003, 93(2) : 793-818.
  • 8HENRY A S, CHEN Gang. Spectral phonon transport properties of silicon based on molecular dynamics simula- tions and lattice dynamics [J]. J Comput Theor Nanosci, 2008, 5(2): 141-152.
  • 9GOODSON K E, JU Y S. Heat conduction in novel electronic films [J]. Annu Rev Mater Sci, 1999, 29(1): 261-293.
  • 10LI Deyu, WU Yiying, KIM P, et al. Thermal conductivity in individual silicon nanowires [J]. Appl Phys Lett, 2003, 83(14): 2934-2936.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部