期刊文献+

MIMO双向中继网络的预编码设计与功控策略 被引量:1

Joint Precoding Design and Power Control in MIMO Two-Way Relay Network
下载PDF
导出
摘要 为加强MIMO双向中继系统的空间复用增益,研究一种低复杂度的发送和接收预编码矩阵.利用子空间对齐方法,将双向MIMO信道分解为多路单入单出(SISO)的子信道形式,使得两个源用户能够使用网络编码获取更好的空间复用增益.同时通过矩阵计算和转化,给出了一种优化的功率分配方案.在确定优化矩阵后,该方案能够为每个子信道独立地进行优化功率分配,并且能够得到各节点间优化功率分配的闭合表达式,从而将算法复杂度从O(n3)降低为O(n).仿真结果表明,在典型场景下,所提方案在具有更低复杂度的优势下,系统性能接近优化的梯度下降迭代方案,优于传统单纯前向放大转发方式(AF),有2.99 bit/(s·Hz)的性能增益. In order to enhance spatial multiplexing gain of multiple input multiple output( MIMO) two-way relay networks,the transceiver precoding matrixes for all nodes with low complexity were investigated. Using subspace alignment scheme,the bi-directional MIMO channel can be decoupled into several single input single output( SISO) sub-channels. It is accessible for source nodes to use network coding to obtain better spatial multiplexing gain. By calculating and transforming the matrices, an optimal power control method for MIMO two-way relay network was presented. This method can independently optimize each sub-channel power allocation with the fixed precoding matrix. Moreover,a closed-form solution for power allocation among relay nodes and users is derived which considerable decreases the complexity from O( n^3) to O( n). Simulation results show that the performance of the proposed approach is close to the iterative gradient descent solution and outperform the traditional pure amplify-and-forward( AF) two-way mode 2. 99 bit /( s·Hz) gains with less computational load in typical scenarios.
出处 《西南交通大学学报》 EI CSCD 北大核心 2013年第6期1090-1096,1128,共8页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(61250005) 江西省科技厅自然科学基金资助项目(20122BAB2111015 20132BAB211035) 教育部归国留学基金资助项目(第45批次) 江西省教育厅基金资助项目(GJJ13007) 中国博士后科学基金第54批面上资助项目(2013M541875)
关键词 多输入多输出系统 网络编码 双向中继 预编码设计 功率控制 凸优化 MIMO systems network coding two-way relay precoding design power control convex optimization
  • 相关文献

参考文献15

  • 1RANKOV B, WITFNEBEN A. Spectral efficient protocols for half-duplex fading relay channels[J]. IEEE Journal of Selected Areas in Communications, 2007, 25 (2) : 379-389.
  • 2YANG Han, TINGS H, HO C K, et al. Performance bounds for two-way amplify-and-forward relaying[J]. IEEE Transactions on Wireless Communication, 2009, 8(1) : 432-439.
  • 3amplify-and-forward relay with channel estimation errors[J]. IET Communications. 2012, 6(12) : 1846- 1855.
  • 4ZHANG Rui, LIANG Yingchang, CHAI C C, et al. Optimal beamforming for two-way multi-antenna relay channel with analogue network coding[J]. IEEE Journal of Selected Areas in Communications, 2009, 27(5) : 699-712.
  • 5JOUNG J, SAYEDA H, User selection methods for muhiuser two-way relay communications using space division multiple access [ J]. IEEE Transactions on Wireless Communications, 2010, 9 (7) : 2310-2136.
  • 6WANG Rui, TAO Meixia, HUANG Yongwei. Linear precoding designs for amplify-and- forward muhiuser two-way relay systems[ J]. IEEE Transcations on Wireless Communications, 2012, 11 (12) : 4457-4469.
  • 7WANG Rtli, TAO Meixia, XIANG Zhengzheng. Non- linear precoding design for MIMO amplify-and- forward two-way relay systems [ J]. IEEE Transactions on Vehicular Technology, 2012, 61 (9) : 3984-3995.
  • 8XU Shengyang, HUA Yingbo. Optimaldesign of spatial source-and-relay matrices for a non-regenerative two-way mimo relay system[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1645-1655.
  • 9YANG Tao, YUAN Xiaojun, LI Ping, et al. A newphysical-layer network coding scheme with eigen- direction alignment precoding for mimo two-way relaying[J]. IEEE Transactions on Communications, 2013, 61(3):973-986.
  • 10LEOW C Y, DING Z G, LEUNG K K. Joint beamforming and power management for non- regenerative M1MO two-way relaying channels[J]. IEEE Transcations on Vechicular technology, 2011, 60 (9) : 4374-4383.

同被引文献10

  • 1Rankov B, Wittneben A. Achievable Rate Regions for the Two-way Relay Channel [C]//Proceedings of the IEEE International Symposium on Information Theory. Washington: IEEE, 2006: 1668-1672.
  • 2Havary-Nassab V, Shahbazpanahi S, Grami A. Optimal Distributed Beamforming for Two-way Relay Networks [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1238-1250.
  • 3Wiesel A, Eldar Y C, Shamai S. Zero-forcing Precoding and Generalized Inverses [J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4409-4418.
  • 4Mo R, Chew Y H. MMSE-based Joint Source and Relay Precoding Design for Amplify-and-forward MIMO Relay Networks [J]. IEEE Transactions on Wireless Communications Systems, 2009, 8(9): 4668-4676.
  • 5Jiang Q, Liao X W, Ren P Y, et al. Joint Power Allocation and Subchannel-pairing for Two-way MIMO-OFDM Relay System [C]//Proceedings of IEEE International Conference on Communications. Piscataway: IEEE, 2013: 1168-1175.
  • 6Wang R, Tao M X. Joint Source and Relay Precoding Designs for MIMO Two-way Relaying Based on MSE Criterion [J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1352-1365.
  • 7Leow C Y, Ding Z, Leung K. Joint Beamforming and Power Management for Nonregenerative MIMO Two-way Relaying Channels [J]. IEEE Transactions on Wireless Communications, 2011, 60(9): 4374-4383.
  • 8Park H, Yang H J, Chun J, et al. A Closed-form Power Allocation aAnd Signal Alignment for a Diagonalized MIMO Two-way Relay Channel with Linear Receivers [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5948-5962.
  • 9Jang Y, Jeong E R, Lee Y H. A Two-step Approach to Power Allocation for OFDM Signals Over Two-way Amplify-and-forward Relay [J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2426-2430.
  • 10国晓博,莫代会,汪李峰,易克初.MIMO波束形成通信系统有效容量分析[J].西安电子科技大学学报,2014,41(1):34-37. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部