期刊文献+

矩阵方程AXB+CXD=F的广义中心对称解的算法分析 被引量:2

An Algorithm for the Generalized Center Symmetric Solutions of AXB+CXD=F
下载PDF
导出
摘要 应用共轭梯度迭代算法求解方程AXB+CXD=F的广义中心对称解及其最佳逼近.应用此迭代算法,在迭代过程中方程的相容性可以自动地判断.当矩阵方程AXB+CXD=F有解时,在有限的误差范围内,对任意初始广义中心对称矩阵X1,运用迭代算法,方程的广义中心对称解可经过有限步迭代得到;选取适当的初始矩阵,可以迭代出极小范数广义中心对称解.并且,对任意的矩阵X0,矩阵方程AXB+CXD=F的最佳逼近解可以通过迭代求解新的矩阵方程A珘XB+C珘XD=珘F的极小范数广义中心对称解得到. The conjugate gradient iteration algorithm was presented to find the generalized centrosymmetric solution and its optimal approximation of the constraint matrix equation AXB + CXD = F. By this method, the solvability of the equation can be determined automatically. If the matrix equation AXB + CXD = F is consistent, then its generalized centrosymmetric solution can be obtained within finite iteration steps in the absence of round off errors for any initial symmetric matrix X1 , and generalized centrosymmetric solution with the least norm can be derived by choosing a proper initial matrix. In addition, the optimal approximation solution for a given matrix of the matrix equation AXB + CXD = F can be obtained by choosing the generalized centrosymmetric solution with the least norm of a new matrix equation AXB + CXD =F.
作者 刘洁
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第6期911-913,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 约束矩阵方程 广义中心对称解 迭代算法 最佳逼近 constraint matrix equation generalized centrosymmetric solution iterative algorithm optimal approximation
  • 相关文献

参考文献5

二级参考文献15

  • 1Roger A Horn,Charles R.Johnson.Topics in Matrix Analysis[M].北京:人民邮电出版社,2005,241-242.
  • 2Gene H Golub,Charles F Van Loan.Matrix Computations[M].Baltimore:The Johns Hpkins University Press,1996,53-644.
  • 3Charles F Van Loan.Generalizing the singular value decomposition[J].SIAM J.Numer Anal.,1976,(13):76-83.
  • 4Moody T Chu,Robert E Funderlic,Gene H Golub.On a variational formulation of the generalized singular value decomposition[J].SIAM J.Matrix Anal.Appl.,1997,(18):1082-1092.
  • 5Gene H Golub,Zha Hongyuan.Perturbation analysis of the canonical correlations of marix pairs[J].Linear Algebra Appl.,1994,(210):3-28.
  • 6Peng Zhenyun,Peng Yaxin.An efficient iterative method for solving the matrix equation A×B+CYD=E[J].Numer Linear Algebra Appl.,2006,(13):473-485.
  • 7Wang Minghui,Cheng Xuehan,Wei Musheng.Iterative algorithms for solving the matrix equation A×B+CXTD=E[J].Appl.Math.Comput.,187(2):622-629.
  • 8LANCASTER P. Explicit solutions of linear matrix equations [J]. SIAM Rev, 1970, 12(4): 544-566.
  • 9DAI Hua. On the symmetric solutions of linear matrix equations [J]. Linear Algebra Appl, 1990, 131: 1-7.
  • 10DENG Yuan-bei, HU Xi-yan. On the solutions optimal approximation of the equation A^TXB=C over ASR^m×m[J]. Numer Math, 2003, 5: 59-62.

共引文献16

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部