期刊文献+

点故障3-ary n立方体中两条无故障点不交路 被引量:1

Two Fault-free Vertex-disjoint Paths in 3-ary n-cube with Faulty Vertices
下载PDF
导出
摘要 研究了含有故障点的Q3n中两条顶点不交的无故障路问题,得到以下结论:当n≥2,设FV(Q3n),若|F|≤2n-4,令x1,y1,x2,y2是Q3n-F中任意四个顶点,则在Q3n-F中存在两条顶点不交的路P1和P2,使得V(P1)∪V(P2)=V(Q3n-F),这里P1连接x1和y1,P2连接x2和y2. In this paper, the following result was obtained. Let Q3n be a 3 - ary n - cube, where n ≥2 , and F be any subset of vertices with | F|≤2n - 4. Assume that x1 ,x2 ,y1 and y2 are any four distinct vertices in Q3 , then there exist two fault - free vertex - disjoint paths P1 between x1 and y1 and P2 between x2 and y2 such that V(P1) ∪ V(P2) = V(Qn-F).
作者 佘卫强
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第6期929-932,共4页 Journal of Jiamusi University:Natural Science Edition
基金 福建省教育厅A类科技项目(JA11172)
关键词 3-ary n立方体 点不交路 容错 网络 3 - ary n - cube vertex - disjoint path fault - tolerant network
  • 相关文献

参考文献2

二级参考文献9

  • 1J. A. Bondy, U. S. R. Murty. Graph Theorywith Applications[M]. Macmillan Press, London, 1976.
  • 2R. Calla, V. Koubck. Spanning multi-paths in hypercubes[J]. Discrete Mathematics, 2007, 307: 2053-2066.
  • 3T.Dvo^1 ak. llamiltonian cycles with prescribed edges in hypercubes[J]. SIAM J.Discrete Math., 2005, 19: 135-144.
  • 4C. H. Tsai, J. J. M. Tan, T. Liang, L. H. Hsu. Fault-tolerant hamiltonian laccability of hypercubes[J]. Inform. Process. Lett, 2002, 83: 301-306.
  • 5A.Bondy,U.S.R.Murty.Graph Theorywith Applications[M].London:Macmillan Press,1976.
  • 6T.Dvorák.Hamiltonian cycles with prescribed edges in hypercubes[J].SIAM J.Discrete Math,2005,19:135-144.
  • 7M.C.Yang,J.M.Tan,L.H.Hsu.Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes[J].Journal of Parallel and Distributed Computing,2007,67(4):362-368.
  • 8B.Bose,B,Broeg,Y.Kwon,Y.Ashir.Lee distance and topological properties of k-ary n-cubes[J].IEEE Transaction on Computers,1995,44(8):1021-1030.
  • 9佘卫强,方来金.边故障超立方体中两条无故障点不交路[J].漳州师范学院学报(自然科学版),2009,22(1):7-9. 被引量:4

共引文献3

同被引文献5

  • 1Yang M. C. , Tan J. M. , Hsu L. H. Hamiltonian Circuit and Linear Array Embeddings in Faulty k - my n - cubes[ J]. Journal of Parallel and D/stributed Computing, 2007, (4) :362 -368.
  • 2Yuxing Yang, Shiying Wang. Fault - free Hamiltonian Cycles Passing Through a Linear Forest in Ternary n - cubes with Faulty Edges[ J ]. Theoretical Computer Science,2013,491:78 - 82.
  • 3Shiying Wang, Yuxing Yang, Jing Li, Shangwei Lin. Hamiltonian Cycles Passing Through Linear Forests in k -ary n -cubes[J]. Discrete Aoolied Mathematics_2011 _ 159-1425 - 1435_.
  • 4Shureng Zhang, Shiying Wang. Harnihonian Cycles Passing Through Linear Forests in k - ary n - cubes[J]. Discrete Ap- plied Mathematics ,2011,159 : 1425 - 1435.
  • 5Bondy J. A. , Murty U. S. R. Graph Theory with Applications, Macmillan Press, London, 1976.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部