摘要
研究了含有故障点的Q3n中两条顶点不交的无故障路问题,得到以下结论:当n≥2,设FV(Q3n),若|F|≤2n-4,令x1,y1,x2,y2是Q3n-F中任意四个顶点,则在Q3n-F中存在两条顶点不交的路P1和P2,使得V(P1)∪V(P2)=V(Q3n-F),这里P1连接x1和y1,P2连接x2和y2.
In this paper, the following result was obtained. Let Q3n be a 3 - ary n - cube, where n ≥2 , and F be any subset of vertices with | F|≤2n - 4. Assume that x1 ,x2 ,y1 and y2 are any four distinct vertices in Q3 , then there exist two fault - free vertex - disjoint paths P1 between x1 and y1 and P2 between x2 and y2 such that V(P1) ∪ V(P2) = V(Qn-F).
出处
《佳木斯大学学报(自然科学版)》
CAS
2013年第6期929-932,共4页
Journal of Jiamusi University:Natural Science Edition
基金
福建省教育厅A类科技项目(JA11172)
关键词
3-ary
n立方体
点不交路
容错
网络
3 - ary n - cube
vertex - disjoint path
fault - tolerant
network