期刊文献+

基于Mean shift和图割的极化特征图像分类

Polarized Characteristics of Image Classification Based on Mean Shift and Graph Cuts
下载PDF
导出
摘要 图割法对极化SAR图像能达到很好的分类效果,但由于极化SAR数据比较庞大,直接用图割法进行分类,计算量太大,所以本文提出一种改进图割模型的分类方法.首先利用自适应的Mean shift算法结合多个极化特征把图像分成若干个同质区域,以这些同质区域的加权平均值作为超像素构建图模型,最后用图割法修正Mean shift过分割来得到最终的分类.实验证明该算法不仅在分类精度上有所提高,而且在速度上更能达到实时性的要求. The graph cuts method could get excellent classification for polarimetric SAR. However, it would be complexed to calculating directly by graph cuts because the data of polarimetric SAR was relatively large. So an improved graph model was present in this paper. First using self-adaptive Mean shift algorithm based on multi- ple polarized characteristics the image is divided into several homogeneous region, and then an improved model is constructed with pixels which were the weighted mean of those homogeneous region. Finally the graph cuts is used to revise over-segmentation caused by Mean shift for the accurate classification. Experiment results indicate that the proposed method improves classification accuracy and meets the requirements of fast computing.
作者 李旭
出处 《山西师范大学学报(自然科学版)》 2013年第4期32-37,共6页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 极化SAR Mean SHIFT算法 区域 图割 图像分类 polarimetric synthetic aperture radar (POL-SAR) Mean shift algorithm region graph cuts image classification
  • 相关文献

参考文献11

  • 1Kong J A, Swartz A A , Yueh H A, et al. Identification of terrain cover using the optimum polarimetric classifier[J]. Journal of Electromagnetic Waves and Applications,1988,2(2) : 171 - 194.
  • 2Harl P, Zhang R, Su Z, et al. An iterative segmentation algorithm of SAR image based on support vector machine [ J ]. IEEE Synthetic Aperture Radar,2009,10( 1 ) : 676 -679.
  • 3Bedawi S M, Kamel M S. A comparative study of clustering methods for urban areas seonentation from high resolution remote sensing image[ J]. IEEE Intelligent Systems Design and Applications,2009, 12(28) :169 - 174.
  • 4Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices [J]. Electronics Letters,2001, 37(3) : 193 - 194.
  • 5Pottier E, Lee J S, Ferrofamil L. Advanced concepts in polarimetry-part 2 (polarimetric target classificatiom) [ R ]. Technical report:NATO RTO- EN-SET-081,2005.1 - 38.
  • 6周晓光,匡纲要,万建伟.极化SAR图像分类综述[J].信号处理,2008,24(5):806-812. 被引量:25
  • 7李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 8Friedman L, Netanyahu N S, Shoshany M. Mean shift-based clustering of remotely sensed data[ C ]. International Geoscience and Remote Sens- ing Symposium, 2003, 6:3432 - 3434.
  • 9Huang X, Zhang L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery [ J ]. IEEE Transactions On Geoscience and Remote Sensing,2008, 46( 12 ) :4173 - 4185.
  • 10Kolmogorov V, Zabin R. What energy functions can be minimized via graph cuts[ J]. IEEE Transactions on Pattern Machine Analysis and Intelli- gence ,2004,26 (2) : 147 - 159.

二级参考文献83

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2徐俊毅,杨健,彭应宁.双波段极化雷达遥感图像分类的新方法[J].中国科学(E辑),2005,35(10):1083-1095. 被引量:9
  • 3Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[ J ] . IEEE Trans. Geosci. Remote Sensing. 2005,43 ( 8 ) : 1699-2005.
  • 4Touzi R. Target scattering decomposition in terms of rollinvariant target parameters [ J ]. IEEE Trans. Geosci. Remote Sensing. 2007,45 ( 1 ).
  • 5Pottier E, Cloude S R. Application of the H/A/α polarimetric decomposition theorems for land classification [ A ]. In : Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry [ C ], San Diego, CA, USA, 1997 : 132-143.
  • 6Qong M. Scattering mechanism identification based on the rotation and eccentric angles of polarimetric SAR data [ A ]. In : Proc. IGARSS' 04 [ C ], Anchorage, AK, USA, 2004 : 3054 -3057.
  • 7Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data [ J ]. IEEE Trans. Geosci. Remote Sensing. 1998,36 ( 3 ) : 963- 973.
  • 8Pierce L E, Ulaby F T, Sarabandi K, et al. Knowledgebased classification of polarimetric SAR images [ J ]. IEEE Trans. Geosci. Remote Sensing. 1994,32 (5) : 1081-1086.
  • 9Aiazzi B, Alparone L, Baronti S, et al. Land cover ctassfication of built-up areas through enhanced fuzzy nearest-mean reclustering of textural features from X- and C-band polarimetric SAR data [ A ]. In: Proc. SPIE Conference on SAR Image Analysis, Modeling, and Techniques VI [ C ] ], Bellingham, WA, USA ,2004 : 105-115.
  • 10Jin Y Q, Xu F. A new set of the parameters for the terrain surface classification in polarimetric SAR image based on deorientation of polarimetric scattering vector [ A ]. In: Proc. IGARSS' 06, Denver, CO, USA, 2006 : 1403-1406.

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部