期刊文献+

非线性几何精确梁理论研究综述 被引量:13

Advances of geometrically exact 3D beam theory
下载PDF
导出
摘要 几何精确梁理论是处理几何非线性梁的一种重要方法,该法能够高效并准确地处理梁的大变形与大转动问题。阐述了该法的2种有限转动参数化形式,其中一种是最新形式;阐述了两大类有限转动插值方法的选取方式,并指出这两类方法的优缺点;阐述了求解动力学方程的2种积分方法的选择,并比较2种方法优势与缺陷。说明该法在处理几何非线性梁问题时具有较少的单元节点自由度与较高的计算效率等优点,但同时存在着转动参数的奇异性、单元应变客观性等问题。因此该法尚不完善,仍值得学者们做进一步研究。 Geometrically exact 3D beam theory can describe the large detormatlon and rotation ol the beam and effectively deals with geometric nonlinear beam problems. The development of geometrically exact 3D beam theory is reviewed. Two methods of parameterizing finite rotation are demonstrated, one o~ which is newly mentioned. Two interpolation methods of the finite rotation are also described~ advantages and disadvantages of those two methods are pointed out. Selection of to two integration methods to solve the dynamic equations is also discussed, and strength and weakness of those two methods are also elaborated. It is indicated that the geometrically exact 3D beam theory has the merits of less general coordinates and higher calculation efficiency when deal- ing with geometric nonlinear beam problems in the meantime, the problems of rotation parameter singularity and unit strain ob- iectivity also exist which need more future investigations.
出处 《中国科技论文》 CAS 北大核心 2013年第11期1126-1130,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20090073110009) 国家自然科学基金资助项目(11132007)
关键词 多体系统动力学 几何非线性 几何精确梁理论 dynamics of multibody nonlinear of geometric geometrically exact beam theory
  • 相关文献

参考文献38

  • 1Shabana A A,Yakoub R Y.Three dimensional absolute nodal coordinate formulation for beam elements:theory[J].J Mech Design,2001,123(4):606-613.
  • 2Yakoub R Y,Shabana A A.Three dimensional absolute nodal coordinate formulation for beam elements:implementation and applications[J].J Mech Design,2001,123(4):614-621.
  • 3Reissner E.On lateral buckling of end-loaded cantilever beams[J].J Appl Math Phys ZAMP,1979,30(1):31-40.
  • 4Reissner E.On one-dimensional finite-strain beam theory:the plane problem[J].J Appl Math Phys ZAMP,1972,23(5):795-804.
  • 5Simo J C.A finite strain beam formulation.The three-dimensional dynamic problem.Part Ⅰ[J].Comput Methods Appl Mech Eng,1985,49(1):55-70.
  • 6Simo J C,Vu-Quoc L.A three-dimensional finite-strain rod model.part Ⅱ:Computational aspects[J].Comput Methods in Appl Mech Eng,1986,58(1):79-116.
  • 7Simo J C,Vu-Quoc L.On the dynamics in space of rods undergoing large motions:a geometrically exact approach[J].Comput Methods Appl Mech Eng,1988,66(2):125-161.
  • 8Simo J C,Tarnow N,Doblare M.Non-linear dynamics of three-dimensional rods:exact energy and momentum conserving algorithms[J].Int J Numer Methods Eng,1995,38(9):1431-1473.
  • 9Shabana A A,Bauchau O A,Hulbert G M.Integration of large deformation finite element and multibody system algorithms[J].J Comput Nonlin Dynam,2007,2(4):351-359.
  • 10Lan P,Shabana A A.Rational finite elements and flexible body dynamics[J].J Vibr Acoust,2010,132 (4):041007.

同被引文献162

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部