期刊文献+

基于EMD的红外遥测光谱信号预处理新方法 被引量:6

New method of preprocessing IR remote sensing spectrum signals based on EMD
下载PDF
导出
摘要 利用红外遥测光谱仪远距离快速、准确地探测污染气体并给出定性鉴别结果,必须对遥测光谱进行预处理,消除高频噪声和低频基线的干扰,提取出污染气体的特征光谱信号。针对现有方法的不足,提出采用具有自适应特性的EMD方法,对光谱信号进行无参数分解,提取出高频噪声与低频基线,实现了红外遥测光谱的预处理。经过该方法处理,光谱信号全局评估系数RMS1平均值达到0.141,局部评估系数RMS2平均值达到0.182,综合评估系数RMS*平均值达到0.026,明显优于小波方法。实验结果表明,EMD方法用于红外遥测光谱信号去噪与基线校正,算法简单,运行可靠,可使问题得到有效解决。 To detect and identify pollutant gases in the distance speedily and accurately with IR remote sensing spectrometer,it is necessary to remove high-frequency noise and low-frequency baseline,of which the purpose is to extract feature information. For the deficiencies of the existing methods, EMD was proposed to preprocess IR remote sensing spectrum. EMD is a preprocessing algorithm which works self-adaptively and without parameters. After High-frequency noise and low-frequency baseline was removed, the global assessment factor RMS1, the partial assessment factor RMS2, and the comprehensive assessment factor RMS* reached 0.141, 0.182 and 0.026 respectively. The perfomace of EMD is better than wavelet decomposition method obviously.The result shows that EMD is convenient and reliable for denoising and baseline correction of IR remote sensing spectrum.
机构地区 防化研究院
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第12期3196-3200,共5页 Infrared and Laser Engineering
基金 国家重点基础研究发展计划973计划(2011CB706902)
关键词 信号处理 红外遥测 光谱 EMD signal processing IR remote sensing spectrum EMD
  • 相关文献

参考文献11

二级参考文献45

共引文献335

同被引文献52

  • 1李天华,施国英,魏珉,汪健民,侯加林.番茄维生素C含量近红外预测光谱的小波去噪[J].农业机械学报,2013,44(S1):200-204. 被引量:14
  • 2陈隽,徐幼麟.经验模分解在信号趋势项提取中的应用[J].振动.测试与诊断,2005,25(2):101-104. 被引量:57
  • 3Zou Xiaobo, Zhao Jiewen, Povey M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667: 14-32.
  • 4Liu Fei, Jiang Yihong, He Yong. Variable selection in visible/ near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer [J], Analytica Chimica Acta, 2009, 635(1): 45-52.
  • 5Cai Wensheng, Li Yankun, Shao Xueguang. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 90 (2): 188-194.
  • 6Givianrad M H, Saber-Tehrani M, Zarin S. Genetic algorithm- based wavelength selection in multicomponent spectrophotometrie determinations by partial least square regression: application to a sulfamethoxazole and trimethoprim mixture in bovine milk [J]. Journal of The Serbian Chemical Society, 2013, 78(4): 555-564.
  • 7Cramer J A, Kramer K E, Johnson K J, et al. Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92: 13-21.
  • 8Yang Xinshe. A new metaheuristic bat-inspired algorithm [J]. Nature Inspired Cooperative Strategies for Optimization, 2010, 284: 65-74.
  • 9Huang Guangbin, Zhu Qinyu, Siew C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1): 489-501.
  • 10Mirjalili S, Mirjalili S M, Yang Xinshe. Binary bat algorithm [J]. Neural Computing and Applications, 2013: 1-19.

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部