期刊文献+

采用高速伪随机码调制和光子计数技术的光纤激光测距系统 被引量:9

Laser ranging system based on high speed pseudorandom modulation and photon counting techniques
下载PDF
导出
摘要 在高速伪随机码调制和光子计数技术的激光测距系统中,将1 550 nm光纤激光器的伪随机码调制速率从622 MHz提高到1 GHz,利用光纤延时方法开展了两种调制速率下的测距实验并进行性能验证和对比。采用10阶M序列伪随机码和探测效率为10%的同一个InGaAs/InP雪崩光电二极管,入射到探测器的信号光能量均为1.94×10-17J时,得到二者的系统信噪比基本一致,但在高调制速率下系统的测距精度提高了1.58倍,基本符合理论计算结果。搭建了实际测距平台并开展基于1GHz调试速率下的室内测距实验,当测量距离约为4.5 m的高反射目标时,得到2.1 cm的测距精度,该实验结果为室外测距实验提供了参考依据。 Pseudorandom modulation rate which used to modulate 1 550 nm fiber laser was prompted from 622 MHz to 1 GHz in the laser ranging system based on high speed pseudorandom modulation and photon counting technology. Ranging performance was compared and demonstrated under two different modulation rates using the optical fiber delay method. 10 order M-sequence pseudorandom code and the same InGaAs/InP single photon detector with detection efficiency of 10% were implemented in the system. Under condition of input signal average energy of 1.94 ×10-17 J, the similar SNRs were acquired in the two systems and the ranging accuracy was improved by 1.58 times under high modulation rate which was in good agreement with theory result. The actual ranging platform was established and ranging experiment was carried out indoor. The ranging accuracy of 2.1 cm was obtained when measuring a high-reflected target which was about 4.5 m away. The result is useful for outdoor ranging system.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第12期3234-3238,共5页 Infrared and Laser Engineering
基金 中国科学院支撑项目(61501010304)
关键词 伪随机码调制 光子计数 激光测距 INGAAS InP雪崩光电二极管 pseudorandom modulation photon counting laser ranging InGaAs/InP avalanche photodiode
  • 相关文献

参考文献18

  • 1Afzal R S, Yu A W. The geoscience laser altimeter system (GLAS) laser transmitter [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 511-536.
  • 2Chen W B, Hou X, Bi J Z, et al. Solid-state laser for laser altemeter in Chang'E lunar exporer [C]//CLEO Baltimore, MD USA, 2007, 1-2.
  • 3Araki H, Tazawa S, Noda H, et al.Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE [J]. Advances in Space Research, 2008, 42(2): 317-322.
  • 4Ramos-Izquierdo L, Scott III V, Schmidt S, et al.Optical system design and integration of the Mercury Laser Altimeter [J]. Applied Optics, 2005, 44(9): 1748-1760.
  • 5Afzal R S.Mars observer laser altimeter:laser transmitter[J]. Applied Optics, 1994, 33(15): 3184-3188.
  • 6Anthony W Y, Li S X, Shaw G B, et al. Overview of space qualified solid-state lasers development at NASA goddard space flight center [C]//SPIE, 2009, 7193:719305-1- 719305-7.
  • 7Takeuchi N, Sugimoto N, Baba H. Random modulation cw lidar[J]. Applied Optics, 1983, 22(9): 1382-1386.
  • 8Machol J L. Comparison of the pseudorandom noise code and pulsed direct-detection lidars for atmospheric probing [J]. Applied Optics, 1997, 36(24): 6021-6023.
  • 9Matthey R, Mitev V. Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements [J]. Optics and Lasers in Engineering, 2004, 43: 557-571.
  • 10Rail J A R, Abshire J B, Manizade S S. Lidar measurements of clouds and aaerosols using AIGaAs lasers modulated with pseudorandom codes [C]//IEEE Lasers and Electro-Optics Society, 1992: 206-207.

二级参考文献38

  • 1王邦新,孙东松,钟志庆,夏海云,沈法华,周小林,董晶晶.多普勒测风激光雷达数据处理方法分析[J].红外与激光工程,2007,36(3):373-376. 被引量:10
  • 2J. B. Abshire, Xiaoli Sun, H. Riris et al.. Geoscience laser altimeter system (GLAS) on the ICES at mission: pre-launch and on-orbit performance [C]. IGARSS, 2003, 3:1534-1536.
  • 3Stewart Nozette, P. Rustan, L. P. Pleasance et al.. The clementine mission to the moon: scientific overview [J]. Science, 1994, 266(5192) :1835-1839.
  • 4W. Chen, X. Hou, J. Biet al.. Solid state laser for laser altimeter in Chang'E lunar explorer [C]. CLEO, Baltimore, MD, USA, Aug. 2007. 1-2.
  • 5Robert S. Afzal. Mars observer laser altimeter: laser transmitter [J]. Appl. Opt., 1994, 33(15):3184-3188.
  • 6John J. Degnan. Photon counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements [J]. J. C, eodyn. , 2002, 34(3 4):503-549.
  • 7Christopher T. Allen, Sek Ken Chong. Development of a 1319 nm Laser Radar Using Fiber Optics and RF Pulse Compression [R]. Information and Telecommunication Technology Center, Kansas, 2002. ITTC-RSL-FY2002-TR 18680-01.
  • 8N. Takeuchi, N. Sugimoto, H. Baba et al.. Random modulation cwlidar[J]. Appl. Opt., 1983, 22(9):1382-1386.
  • 9James B. Abshire, Xiaoli Sun, Micahaei A. Krainak. Laser altimetry using pseudo noise code modulated fiber lasers and photon counting detectors [C]. CLEO, Baltimore, MD, USA, 2005, 3:1991-1993.
  • 10Xiaoli Sun, James B. Abshire, Michael A. Krainak et al.. Photon counting pseudorandom noise code laser altimeters [C]. SPIE, 2007, 6771:677100.

共引文献24

同被引文献68

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部