期刊文献+

双目协同多分辨率主动跟踪方法 被引量:1

Multi-resolution active tracking algorithm using two-camera collaboration
下载PDF
导出
摘要 PTZ(pan-tilt-zoom)相机由于其具有可变视角和可变分辨率能力,在视频监控领域得到了广泛的应用。该文针对智能监控的需求,提出了一种基于双目PTZ相机的多分辨率主动跟踪方法。该方法分为离线标定和在线协同跟踪两部分。离线标定部分,提出了一种基于图像特征匹配的单目自标定和基于目标运动信息的双目自标定方法,该方法操作简单,无需标定物,在最大程度上减小了对人工干预的依赖,在此基础上推导了系统所具有的两个重要性质;在线协同跟踪部分,设计了一种分段静止的协同跟踪策略。通过实际监控场景下的视频实验,验证方法的有效性和可行性。实验结果表明,该方法可以在复杂环境下有效的主动跟踪目标,在智能监控领域具有较广泛的应用前景。 PTZ (pan-tilt-zoom) cameras have been widely used in visual surveillance domain due to their ability to cover wide field of view and large scale range. For the large demand of intelligent visual surveillance, a novel multi-resolution active tracking method was presented based on two PTZ cameras. The proposed method consists of two stages: off-line calibration and on-line cooperative tracking. In off-line calibration stage, a novel method was presented that combines feature based single-PTZ camera self-calibration and object motion based dual-PTZ cameras self-calibration. The proposed approach doesn′t require calibration tools and manual operation. Two important properties of proposed system were also inferred based on above calibration method. In on-line tracking stage, a piecewise cooperative tracking strategy was designed. The verification of proposed algorithm framework was implemented on real outdoor surveillance environment. Experimental results show that the proposed method can track the moving object effectively. The proposed framework can be used in intelligent visual surveillance with wide application prospect.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第12期3509-3516,共8页 Infrared and Laser Engineering
基金 国家自然科学基金(61021063 61225008)
关键词 目标跟踪 主动跟踪 PTZ相机 双目协同 自标定 object tracking active tracking PTZ camera two-camera collaboration auto-calibration
  • 相关文献

参考文献18

  • 1赵倩,袁健全,鲁新平,李吉成.结合目标预估计与Mean Shift理论的运动目标跟踪算法[J].红外与激光工程,2010,39(6):1152-1156. 被引量:6
  • 2孟钢,姜志国,赵丹培.梯度方向直方图和子流形在目标跟踪中的应用[J].红外与激光工程,2012,41(6):1664-1668. 被引量:4
  • 3Hu W M, Tan T N, Wang L, et al. A survey on visual surveillance of object motion and behaviors [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 4Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 5Xue K, Liu Y, Ogunmakin G, et al. Panoramic gaussian mixture model and large-scale range background subtraction method for PTZ cam era-based surveillance systems [J].Machine Vision and Application, 2012, 11(4): 1-16.
  • 6Kumar P, Dick A, Sheng T S. Real time target tracking with pan tilt zoom camera [C]//Digital Image Computing: Techniques and Applications, 2009: 492-497.
  • 7Varcheie P D Z, Bilodeau G A. People tracking using a network-based PTZ camera[J]. Machine Vision and Application,2011, 22(4): 671-690.
  • 8Bernardin K, Camp F V D, Stiefelhagen R. Automatic person detection and tracking using fuzzy controlled active cameras [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 9Zhang Z Y. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 11(11): 1330-1334.
  • 10Sinha S, Pollefeys M. Towards calibrating a pan-tilt-zoom cameras network [C]//European Conference on Computer Vision Workshop, 2004: 1-11.

二级参考文献18

  • 1郭礼华,李建华,杨树堂.基于运动补偿的Snake视频对象跟踪算法[J].红外与激光工程,2005,34(1):93-97. 被引量:5
  • 2李龙,李俊山,叶霞.基于Mean Shift算法的运动平台下红外目标跟踪[J].红外与激光工程,2007,36(2):229-232. 被引量:13
  • 3COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):564-577.
  • 4江淑红,张建秋,胡波.目标中心距离加权的图像跟踪算法.第十二届全国图像图形学术会议论文集,2005:364-367.
  • 5COMANICIU D,MEER P.Mean Shift:a Robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 6COMANICIU D,MEER P.Robust analysis of feature spaces:color image segmentation[C] //Proc 1997 IEEE conf Computer Vision and Pattern Recognition,1997:750-755.
  • 7COMANICIU D,RAMESH V,MEER P.Real-time tracking of non-rigid objects using Mean Shift[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2000,2(8):142-149.
  • 8Dalal N, Triggs B. Histograms of oriented gradients for human detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
  • 9He Xiaofei, Niyogi P. Locality preserving projections [C]// Proceedings of Advances in Neural Information Processing Systems 16 (NIPS'2003), 2003: 153-162.
  • 10Jiang Shall, Shuang Kai, Fan Guoliang, et al. Multi-view face recognition based on manifold learning and multilinear representation [C]//ICSP, 2008.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部