期刊文献+

极限学习机方法在经纬仪空间配准中的应用 被引量:1

Application of extreme learning machine method in space registration to theodolite
下载PDF
导出
摘要 针对光电经纬仪测量中多传感器的空间配准问题,提出了一种基于极限学习机(ELM)的空间配准建模方法。首先介绍了ELM算法和ELM空间配准模型的建立步骤,然后使用星体测量数据建立ELM空间配准模型,最后将该模型与单项差修正模型、球谐函数修正模型进行了对比验证。实验结果表明:ELM空间配准模型可以使光电经纬仪的测量精度从17″左右提高到1″以内,与单项差修正模型、球谐函数修正模型相比精度提高35%以上。由此可见,与单项差修正模型和球谐函数修正模型相比,采用ELM算法所建立的光电经纬仪空间配准模型具有更高的精度和更强的泛化能力。 In order to solve the space registration problems of multi-sensor in the photoelectric theodolite measurement, a space registration model based on the extreme learning machine (ELM) algorithm was proposed in this paper. Firstly, the ELM theory and the modeling steps of ELM space registration model were introduced. Then, the star measurement data was used to build ELM space registration model. Finally, the ELM space registration model was compared with single error correction model and spherical harmonics correction model. Experimental results indicate that ELM space registration method can improve the measuring precision of photoelectrical theodolite from about 17″ to less than 1″; the accuracy of the ELM space registration model is improved by more than 35% than single error correction model and spherical harmonics correction model. The results indicate that compare with the single error correction model and spherical harmonics correction model, space registration model based on ELM algorithm has higher prediction accuracy and stronger generalization capability.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第12期3517-3521,共5页 Infrared and Laser Engineering
基金 国家863高技术研究发展计划(2008AA0047)
关键词 极限学习机 光电经纬仪 空间配准 误差修正 extreme learning machine photoelectric theodolite space registration error correction
  • 相关文献

参考文献9

二级参考文献89

共引文献71

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部